skip to main content

Title: Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales
Abstract Ambient fine particulate matter (PM 2.5 ) is the world’s leading environmental health risk factor. Reducing the PM 2.5 disease burden requires specific strategies that target dominant sources across multiple spatial scales. We provide a contemporary and comprehensive evaluation of sector- and fuel-specific contributions to this disease burden across 21 regions, 204 countries, and 200 sub-national areas by integrating 24 global atmospheric chemistry-transport model sensitivity simulations, high-resolution satellite-derived PM 2.5 exposure estimates, and disease-specific concentration response relationships. Globally, 1.05 (95% Confidence Interval: 0.74–1.36) million deaths were avoidable in 2017 by eliminating fossil-fuel combustion (27.3% of the total PM 2.5 burden), with coal contributing to over half. Other dominant global sources included residential (0.74 [0.52–0.95] million deaths; 19.2%), industrial (0.45 [0.32–0.58] million deaths; 11.7%), and energy (0.39 [0.28–0.51] million deaths; 10.2%) sectors. Our results show that regions with large anthropogenic contributions generally had the highest attributable deaths, suggesting substantial health benefits from replacing traditional energy sources.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland–urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM 2.5 (particulate matter with diameter <2.5 μm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change–induced wildfire smoke could approach projected overall increasesmore »in temperature-related mortality from climate change—but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy.« less
  2. To tackle the severe fine particle (PM2.5) pollution in China, the government has implemented stringent control policies mainly on power plants, industry, and transportation since 2005, but estimates of the effectiveness of the policy and the temporal trends in health impacts are subject to large uncertainties. By adopting an integrated approach that combines chemical transport simulation, ambient/household exposure evaluation, and health-impact assessment, we find that the integrated population-weighted exposure to PM2.5(IPWE) decreased by 47% (95% confidence interval, 37–55%) from 2005 [180 (146–219) μg/m3] to 2015 [96 (83–111) μg/m3]. Unexpectedly, 90% (86–93%) of such reduction is attributed to reduced household solid-fuel use, primarily resulting from rapid urbanization and improved incomes rather than specific control policies. The IPWE due to household fuels for both cooking and heating decreased, but the impact of cooking is significantly larger. The reduced household-related IPWE is estimated to avoid 0.40 (0.25–0.57) million premature deaths annually, accounting for 33% of the PM2.5-induced mortality in 2015. The IPWE would be further reduced by 63% (57–68%) if the remaining household solid fuels were replaced by clean fuels, which would avoid an additional 0.51 (0.40–0.64) million premature deaths. Such a transition to clean fuels, especially for heating, requires technology innovation andmore »policy support to overcome the barriers of high cost of distribution systems, as is recently being attempted in the Beijing–Tianjin–Hebei area. We suggest that household-fuel use be more highly prioritized in national control policies, considering its effects on PM2.5exposures.

    « less
  3. Abstract

    Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5μm) concentrations by up to 17.5 and 13.7µg m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, wemore »estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.

    « less
  4. We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impacts of COVID-19 largely fall along lines of race and class. Indicators of poverty, race, disability, language isolation, rent burden, unemployment, lack of health insurance, and housing crowding all significantly drive spatial patterns in prevalence of COVID-19 testing, confirmed cases, death rates, and severity. Income in particular has a consistent negative relationship with rates of death and disease severity. The largest differences in social vulnerability indicators are also driven by populations of people of color, poverty, housing crowding, and rates of disability. Results highlight the need for targeted responses to address injustice of COVID-19 cases and deaths, importance of recovery strategiesmore »that account for differential vulnerability, and provide an analytical approach for advancing research to examine potential similar injustice of COVID-19 in other U.S. cities. Significance Statement Communities around the world have variable success in mitigating the social impacts of COVID-19, with many urban areas being hit particularly hard. Analysis of social vulnerability to COVID-19 in the NYC, the U.S. national epicenter, shows strongly disproportionate impacts of the pandemic on low income populations and communities of color. Results highlight the class and racial inequities of the coronavirus pandemic in NYC, and the need to unpack the drivers of social vulnerability. To that aim, we provide a replicable framework for examining patterns of uneven social vulnerability to COVID-19- using publicly available data which can be readily applied in other study regions, especially within the U.S.A. This study is important to inform public and policy debate over strategies for short- and long-term responses that address the injustice of disproportionate impacts of COVID-19. Although similar studies examining social vulnerability and equity dimensions of the COVID-19 outbreak in cities across the U.S. have been conducted (Cordes and Castro 2020, Kim and Bostwick 2002, Gaynor and Wilson 2020; Wang et al. 2020; Choi and Unwin 2020), this study provides a more comprehensive analysis in NYC that extends previous contributions to use the highest resolution spatial units for data aggregation (ZCTAs). We also include mortality and severity rates as key indicators and provide a replicable framework that draws from the Centers for Disease Control and Prevention’s Social Vulnerability indicators for communities in NYC.« less
  5. Abstract

    India’s coal-heavy electricity system is the world’s third largest and a major emitter of air pollution and greenhouse gas emissions. Consequently, it remains a focus of decarbonization and air pollution control policy. Considerable heterogeneity exists between states in India in terms of electricity demand, generation fuel mix, and emissions. However, no analysis has disentangled the expected, state-level spatial differences and interactions in air pollution mortality under current and future power sector policies in India. We use a reduced-complexity air quality model to evaluate annual PM2.5mortalities associated with electricity production and consumption in each state in India. Furthermore, we test emissions control, carbon tax, and market integration policies to understand how changes in power sector operations affect ambient PM2.5concentrations and associated mortality. We find poorer, coal-dependent states in eastern India disproportionately face the burden of PM2.5mortality from electricity in India by importing deaths. Wealthier, high renewable energy states in western and southern India meanwhile face a lower burden by exporting deaths. This suggests that as these states have adopted more renewable generation, they have shifted their coal generation and associated PM2.5mortality to eastern areas. We also find widespread sulfur emissions control decreases mortality by about 50%. Likewise, increasing carbon taxesmore »in the short term reduces annual mortality by up to 9%. Market reform where generators between states pool to meet demand reduces annual mortality by up to 8%. As India looks to increase renewable energy, implement emissions control regulations, establish a carbon trading market, and move towards further power market integration, our results provide greater spatial detail for a federally structured Indian electricity system.

    « less