skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extending the Kinetic and Thermodynamic Limits of Molecular-Beam Epitaxy Utilizing Suboxide Sources or Metal-Oxide-Catalyzed Epitaxy
Award ID(s):
2039380
PAR ID:
10329483
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Review Applied
Volume:
17
Issue:
3
ISSN:
2331-7019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Epitaxial growth, a crystallographically oriented growth induced by the chemical bonding between crystalline substrate and atomic building blocks, has been a key technique in the thin-film and heterostructure applications of semiconductors. However, the epitaxial growth technique is limited by different lattice mismatch and thermal expansion coefficients of dissimilar crystals. Two-dimensional (2D) materials with dangling bond-free van der Waals surfaces have been used as growth templates for the hetero-integration of highly mismatched materials. Moreover, the ultrathin nature of 2D materials also allows for remote epitaxial growth and confinement growth of quasi-2D materials via intercalation. Here, we review the hetero-dimensional growth on 2D substrates: van der Waals epitaxy (vdWE), quasi vdWE, and intercalation growth. We discuss the growth mechanism and fundamental challenges for vdWE on 2D substrates. We also examine emerging vdWE techniques that use epitaxial liftoff and confinement epitaxial growth in detail. Finally, we give a brief review of radiation effects in 2D materials and contrast the damage induced with their 3D counterparts. 
    more » « less
  2. Strain-engineering is a powerful means to tune the polar, structural, and electronic instabilities of incipient ferroelectrics. KTaO3 is near a polar instability and shows anisotropic superconductivity in electron-doped samples. Here, we demonstrate growth of high-quality KTaO3 thin films by molecular-beam epitaxy. Tantalum was provided by either a suboxide source emanating a TaO2 flux from Ta2O5 contained in a conventional effusion cell or an electron-beam-heated tantalum source. Excess potassium and a combination of ozone and oxygen (10% O3 + 90% O2) were simultaneously supplied with the TaO2 (or tantalum) molecular beams to grow the KTaO3 films. Laue fringes suggest that the films are smooth with an abrupt film/substrate interface. Cross-sectional scanning transmission electron microscopy does not show any extended defects and confirms that the films have an atomically abrupt interface with the substrate. Atomic force microscopy reveals atomic steps at the surface of the grown films. Reciprocal space mapping demonstrates that the films, when sufficiently thin, are coherently strained to the SrTiO3 (001) and GdScO3 (110) substrates. 
    more » « less
  3. Hybrid MBE produces epitaxial SrTiO 3 free-standing nanomembranes using remote epitaxy in an adsorption-controlled manner. 
    more » « less
  4. The ability to synthesize new materials with unique functionalities has provided the foundation for modern electronics and for new discoveries. Oxide molecular beam epitaxy (MBE) has played a vital role in this endeavor. In this chapter, key fundamental concepts discussing the physics of complex oxides, followed by the important role of oxide MBE, are presented. Recent technical advances, current and potential challenges, and advantages of an oxide MBE are reviewed. Important factors responsible for electronic-quality oxide films – including of those metals that are difficult to oxidize – are discussed, with particular emphasis on new developments with radical-based MBE approaches. Taking analogy from III–V MBE, the current status and future prospects of oxide MBE are discussed in developing oxide electronics operating at room temperature. 
    more » « less