This paper studies the fundamental problem of learning deep generative models that consist of multiple layers of latent variables organized in top-down architectures. Such models have high expressivity and allow for learning hierarchical representations. Learning such a generative model requires inferring the latent variables for each training example based on the posterior distribution of these latent variables. The inference typically requires Markov chain Monte Caro (MCMC) that can be time consuming. In this paper, we propose to use noise initialized non-persistent short run MCMC, such as nite step Langevin dynamics initialized from the prior distribution of the latent variables, as an approximate inference engine, where the step size of the Langevin dynamics is variationally optimized by minimizing the Kullback-Leibler divergence between the distribution produced by the short run MCMC and the posterior distribution. Our experiments show that the proposed method outperforms variational auto-encoder (VAE) in terms of reconstruction error and synthesis quality. The advantage of the proposed method is that it is simple and automatic without the need to design an inference model.
more »
« less
History Marginalization Improves Forecasting in Variational Recurrent Neural Networks
Deep probabilistic time series forecasting models have become an integral part of machine learning. While several powerful generative models have been proposed, we provide evidence that their associated inference models are oftentimes too limited and cause the generative model to predict mode-averaged dynamics. Mode-averaging is problematic since many real-world sequences are highly multi-modal, and their averaged dynamics are unphysical (e.g., predicted taxi trajectories might run through buildings on the street map). To better capture multi-modality, we develop variational dynamic mixtures (VDM): a new variational family to infer sequential latent variables. The VDM approximate posterior at each time step is a mixture density network, whose parameters come from propagating multiple samples through a recurrent architecture. This results in an expressive multi-modal posterior approximation. In an empirical study, we show that VDM outperforms competing approaches on highly multi-modal datasets from different domains.
more »
« less
- PAR ID:
- 10329938
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 23
- Issue:
- 12
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 1563
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multivariate time series anomaly detection has become an active area of research in recent years, with Deep Learning models outperforming previous approaches on benchmark datasets. Among reconstruction-based models, most previous work has focused on Variational Autoencoders and Generative Adversarial Networks. This work presents DGHL, a new family of generative models for time series anomaly detection, trained by maximizing the observed likelihood by posterior sampling and alternating back-propagation. A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently. Despite relying on posterior sampling, it is computationally more efficient than current approaches, with up to 10x shorter training times than RNN based models. Our method outperformed current state-of-the-art models on four popular benchmark datasets. Finally, DGHL is robust to variable features between entities and accurate even with large proportions of missing values, settings with increasing relevance with the advent of IoT. We demonstrate the superior robustness of DGHL with novel occlusion experiments in this literature. Our code is available at https://github. com/cchallu/dghl.more » « less
-
We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform.more » « less
-
Latent variable models for text, when trained successfully, accurately model the data distribution and capture global semantic and syntactic features of sentences. The prominent approach to train such models is variational autoencoders (VAE). It is nevertheless challenging to train and often results in a trivial local optimum where the latent variable is ignored and its posterior collapses into the prior, an issue known as posterior collapse. Various techniques have been proposed to mitigate this issue. Most of them focus on improving the inference model to yield latent codes of higher quality. The present work proposes a short run dynamics for inference. It is initialized from the prior distribution of the latent variable and then runs a small number (e.g., 20) of Langevin dynamics steps guided by its posterior distribution. The major advantage of our method is that it does not require a separate inference model or assume simple geometry of the posterior distribution, thus rendering an automatic, natural and flexible inference engine. We show that the models trained with short run dynamics more accurately model the data, compared to strong language model and VAE baselines, and exhibit no sign of posterior collapse. Analyses of the latent space show that interpolation in the latent space is able to generate coherent sentences with smooth transition and demonstrate improved classification over strong baselines with latent features from unsupervised pretraining. These results together expose a well-structured latent space of our generative model.more » « less
-
Abstract Monitoring machine health and product quality enables predictive maintenance that optimizes repairs to minimize factory downtime. Data-driven intelligent manufacturing often relies on probabilistic techniques with intractable distributions. For example, generative models of data distributions can balance fault classes with synthetic data, and sampling the posterior distribution of hidden model parameters enables prognosis of degradation trends. Normalizing flows can address these problems while avoiding the training instability or long inference times of other generative Deep Learning (DL) models like Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), and diffusion networks. To evaluate normalizing flows for manufacturing, experiments are conducted to synthesize surface defect images from an imbalanced data set and estimate parameters of a tool wear degradation model from limited observations. Results show that normalizing flows are an effective, multi-purpose DL architecture for solving these problems in manufacturing. Future work should explore normalizing flows for more complex degradation models and develop a framework for likelihood-based anomaly detection. Code is available at https://github.com/uky-aism/flows-for-manufacturing.more » « less
An official website of the United States government

