skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High ionic conductivity in fluorite δ-bismuth oxide-based vertically aligned nanocomposite thin films
δ-Bi 2 O 3 has long been touted as a potential material for use in solid oxide fuel cells (SOFC) due to its intrinsically high ionic conductivity. However, its limited operational temperature has led to stabilising the phase from >725 °C to room temperature either by doping, albeit with a compromise in conductivity, or by growing the phase confined within superlattice thin films. Superlattice architectures are challenging to implement in functional μSOFC devices owing to their ionic conducting channels being in the plane of the film. Vertically aligned nanocomposites (VANs) have the potential to overcome these limitations, as their nanocolumnar structures are perpendicular to the plane of the film, hence connecting the electrodes at top and bottom. Here, we demonstrate for the first time the growth of epitaxially stabilised δ-Bi 2 O 3 in VAN films, stabilised independently of substrate strain. The phase is doped with Dy and is formed in a VAN film which incorporates DyMnO 3 as a vertically epitaxially stabilising matrix phase. Our VAN films exhibit very high ionic conductivity, reaching 10 −3 S cm −1 at 500 °C. This work opens up the possibility to incorporate thin film δ-Bi 2 O 3 based VANs into functional μSOFC devices, either as cathodes (by pairing δ-Bi 2 O 3 with a catalytically active electronic conductor) and/or electrolytes (by incorporating δ-Bi 2 O 3 with an insulator).  more » « less
Award ID(s):
1809520 2016453
PAR ID:
10329976
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
10
Issue:
7
ISSN:
2050-7488
Page Range / eLocation ID:
3478 to 3484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO 3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO 3 :MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films. 
    more » « less
  2. Vertically aligned nanocomposite (VAN) thin films have shown strong potential in oxide nanoionics but are yet to be explored in detail in solid-state battery systems. Their 3D architectures are attractive because they may allow enhancements in capacity, current, and power densities. In addition, owing to their large interfacial surface areas, the VAN could serve as models to study interfaces and solid-electrolyte interphase formation. Here, we have deposited highly crystalline and epitaxial vertically aligned nanocomposite films composed of a LixLa0.32±0.05(Nb0.7±0.1Ti0.32±0.05)O3±δ-Ti0.8±0.1Nb0.17±0.03O2±δ-anatase [herein referred to as LL(Nb, Ti)O-(Ti, Nb)O2] electrolyte/anode system, the first anode VAN battery system reported. This system has an order of magnitude increased Li+ ionic conductivity over that in bulk Li3xLa1/3−xNbO3 and is comparable with the best available Li3xLa2/3−xTiO3 pulsed laser deposition films. Furthermore, the ionic conducting/electrically insulating LL(Nb, Ti)O and electrically conducting (Ti, Nb)O2 phases are a prerequisite for an interdigitated electrolyte/anode system. This work opens up the possibility of incorporating VAN films into an all solid-state battery, either as electrodes or electrolytes, by the pairing of suitable materials. 
    more » « less
  3. Abstract Vertically aligned nanocomposite (VAN) thin films offer exceptional physical properties through diverse material combinations, providing a robust platform for designing complex nanocomposites with tailored performance. Considering materials compatibility issues, most of oxide‐metal VANs have focused on noble metals as the secondary phase in the oxide matrix. Here, an oxide‐metal hybrid metamaterials in the VAN form has been designed which combines ferroelectric BaTiO3(BTO) with two immiscible non‐noble metal elements of Co and Cu, resulting in a three‐phase BTO‐Co‐Cu (BTO‐CC) VAN film. This film exhibits a characteristic nanopillar‐in‐matrix nanostructure with three distinct types of nanopillar morphologies, i.e., Co‐rich cylindrical nanopillars, Cu‐Co‐nanolaminated Co rectangular nanopillars and Co‐Cu‐core–shell cylindrical nanopillars. Phase field modeling indicates the constructed structure is resulted from the interplay between thermochemical, chemomechanical, and interfacial energy driving forces. The strong structural anisotropy leads to anisotropic optical and magnetic properties, presenting potential as hyperbolic metamaterial (HMM) with transverse‐positive dispersion in the near‐infrared region. The inclusion of non‐noble Cu nanostructure induces surface plasmon resonance (SPR) in the visible region. Additionally, ferroelectric properties have been demonstrated in a BTO/BTO‐CC bilayer, confirming room‐temperature multiferroicity in the film. The complex three‐phase VANs offer a novel platform for exploring electro‐magneto‐optical coupling along vertical interfaces toward future integrated devices. 
    more » « less
  4. Abstract Flexible and wearable sensors show enormous potential for personalized healthcare devices by real‐time monitoring of an individual's health. Typically, a single functional material is selected for one sensor to sense a particular physical signal while multiple materials will be selected for multi‐mode sensing. Vertically aligned nanocomposites (VANs) have recently demonstrated various material combinations and novel coupled multifunctionalities that are hard to achieve in any single‐phase material alone, including multiphase multiferroics, magneto‐optic coupling, and strong magnetic and optical anisotropy. Integrating these novel VANs into wearable sensors shows enormous potential in multi‐mode sensing owing to their multifunctional nature. In this work, the transfer of VANs onto polydimethylsiloxane as a novel flexible chemical and pressure sensor is demonstrated. For this demonstration, the classical BaTiO3‐Au VAN with combined plasmonic and piezoelectric properties is used to demonstrate a multi‐sensing mechanism. A thin water‐soluble buffer of Sr3Al2O6serves as a buffer layer for the epitaxial growth and transfer process. The electrical output based on the piezoelectric responses and identifying 4‐mercaptobenzoic acid by surface‐enhanced Raman spectroscopy reveal great potential for free‐standing VANs in a wearable multifunctional sensing platform. 
    more » « less
  5. Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin Bi 3 Fe 2 Mn 2 O 10+ δ layered supercell (BFMO322 LS) structure was deposited on an LaAlO 3 (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi–O slabs and two-layer-thick Mn/Fe–O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm −3 is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices. 
    more » « less