Abstract Consumers can play critical roles in ecosystem resilience by modifying community resistance and recovery rates. In coral reefs, grazers can increase reef resilience by controlling algae and maintaining open space for coral recruitment, but can also erode the reef framework critical for coral recovery. Here we examine the context‐dependent effects of herbivores on reef persistence in Caribbean Panamá. Using a series of lab and field experiments, we found that the erosional effects of the herbivorous reef urchin (Echinometra viridis) were 2 orders of magnitude greater on dead corals than live corals, and surveys across multiple similarly overfished reefs revealed a positive relationship between urchin densities and percent cover of bare dead coral with urchin densities exceeding 150 m−2in some reefs. However, we observed that a mat‐forming zoanthid (Zoanthus pulchellus), found exclusively on dead corals, had an inverse spatial relationship with urchins. Through a series of field experiments, we found that zoanthid overgrowth repelled urchins, increased dead coral persistence, and decreased erosion of dead corals making up the reef framework by more than 50% over a 22‐month period. Our findings reveal that zoanthids can provide associational refuge to dead corals by enhancing their persistence under high urchin grazing pressure. We suggest that secondary space‐holders, such as zoanthids, may play increasingly important functional roles in degraded reef systems by shielding coral skeletons from external bioeroders. Moreover, the Stress Gradient Hypothesis, which predicts that the importance of positive interactions such as associational refuges increases with consumer pressure, extends to dead foundation species such as coral skeletons crucial for ecosystem recovery.
more »
« less
Biodiversity has a positive but saturating effect on imperiled coral reefs
Species loss threatens ecosystems worldwide, but the ecological processes and thresholds that underpin positive biodiversity effects among critically important foundation species, such as corals on tropical reefs, remain inadequately understood. In field experiments, we manipulated coral species richness and intraspecific density to test whether, and how, biodiversity affects coral productivity and survival. Corals performed better in mixed species assemblages. Improved performance was unexplained by competition theory alone, suggesting that positive effects exceeded agonistic interactions during our experiments. Peak coral performance occurred at intermediate species richness and declined thereafter. Positive effects of coral diversity suggest that species’ losses on degraded reefs make recovery more difficult and further decline more likely. Harnessing these positive interactions may improve ecosystem conservation and restoration in a changing ocean.
more »
« less
- PAR ID:
- 10330308
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 42
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience. From 2006 to 2010 coral reefs on the fore reef of Moorea, French Polynesia, experienced severe disturbances that reduced coral cover from ~46% in 2005 to <1% in 2010. Following these disturbances, coral cover increased from 2010 to 2018. Although there was a rapid and widespread recovery of corals, reefs at 17 m depth recovered more slowly than reefs at 10 m depth. We investigated the drivers of different rates of coral recovery between depths from 2010 to 2018 using a combination of time‐series data on coral recruitment, density, growth, and mortality in addition to field experiments testing for the effects of predation. Propagule abundance did not influence recovery, as the density of coral recruits (spat <6 months old) did not differ between depths. However, mortality of juvenile corals (≤5 cm diameter) was higher at 17 m, leading to densities of juvenile corals 3.5 times higher at 10 m than at 17 m depth. Yet, there were no differences in the growth of corals between depths. These results point to an early life stage bottleneck after settlement, resulting in greater mortality at 17 m than at 10 m as the likely driver of differential coral recovery between depths. We used experiments and time‐series data to test mechanisms that could drive different rates of juvenile coral mortality across depths, including differences in predation, competition, and the availability of suitable substratum. The results of these experiments suggested that increased coral mortality at 17 m may have been influenced by higher intensity of fish predation, and higher mortality of corals attached to unfavorable substratum. In contrast, the abundance of macroalgae, a coral competitor, did not explain differences in coral survival. Our work suggests that top‐down processes and substratum quality can create bottlenecks in corals that can drive rates of coral recovery after disturbance.more » « less
-
Abstract Coral disease is becoming increasingly problematic on reefs worldwide. However, most coral disease research has focused on the abiotic drivers of disease, potentially overlooking the role of species interactions in disease dynamics. Coral predators in particular can influence disease by breaking through protective tissues and exposing corals to infections, vectoring diseases among corals, or serving as reservoirs for pathogens. Numerous studies have demonstrated the relationship between corallivores and disease in certain contexts, but to date there has been no comprehensive synthesis of the relationships between corallivores and disease, which hinders our understanding of coral disease dynamics. To address this void, we identified 65 studies from 26 different ecoregions that examine this predator–prey-disease relationship. Observational studies found over 20 positive correlations between disease prevalence and corallivore abundance, with just four instances documenting a negative correlation between corallivores and disease. Studies found putative pathogens in corallivore guts and experiments demonstrated the ability of corallivores to vector pathogens. Corallivores were also frequently found infesting disease margins or targeting diseased tissues, but the ecological ramifications of this behavior remains unknown. We found that the impact of corallivores was taxon-dependent, with most invertebrates increasing disease incidence, prevalence, or progression; fish showing highly context-dependent effects; and xanthid crabs decreasing disease progression. Simulated wounding caused disease in many cases, but experimental wound debridement slowed disease progression in others, which could explain contrasting findings from different taxa. The negative effects of corallivores are likely to worsen as storms intensify, macroalgal cover increases, more nutrients are added to marine systems, and water temperatures increase. As diseases continue to impact coral reefs globally, a more complete understanding of the ecological dynamics of disease—including those involving coral predators—is of paramount importance to coral reef conservation and management.more » « less
-
Abstract Hundreds of studies now document positive relationships between biodiversity and critical ecosystem processes, but as ecological communities worldwide shift toward new species configurations, less is known regarding how the biodiversity of undesirable species will shape the functioning of ecosystems or foundation species. We manipulated macroalgal species richness in experimental field plots to test whether and how the identity and diversity of competing macroalgae affected the growth, survival, and microbiome of a common coral in Mo'orea, French Polynesia. Compared to controls without algal competitors, coral growth was significantly suppressed across three macroalgal monocultures, a polyculture of the same three macroalgae, and plots containing inert seaweed mimics; coral mortality was limited and did not differ significantly among treatments. One macroalga suppressed coral growth significantly less than the other two, but none differed from the inert mimic in terms of coral suppression. The composition, dispersion, and diversity of coral microbiomes in treatments with live macroalgae or inert plastic mimics did not differ from controls experiencing no competition. Microbiome composition differed between two macroalgal monocultures and a monoculture versus plastic mimics, but no other microbiome differences were observed among macroalgal or mimic treatments. Together, these findings suggest that algal diversity does not alter harmful impacts of macroalgae on coral performance, which could be accounted for by physical structure alone in these field experiments. While enhancing biodiversity is a recognized strategy for promoting desirable species, it would be worrisome if biodiversity also enhanced the negative impacts of undesirable species. We documented no such effects in this investigation.more » « less
-
Abstract Coral reefs continue to experience extreme environmental pressure from climate change stressors, but many coral reefs are also exposed to eutrophication. It has been proposed that changes in the stoichiometry of ambient nutrients increase the mortality of corals, whereas eutrophication may facilitate phase shifts to macroalgae-dominated coral reefs when herbivory is low or absent. But are corals ever nutrient limited, and can eutrophication destabilize the coral symbiosis making it more sensitive to environmental stress because of climate change? The effects of eutrophication are confounded not just by the effects of climate change but by the presence of chemical pollutants in industrial, urban, and agricultural wastes. Because of these confounding effects, the increases in nutrients or changes in their stoichiometry in coastal environments, although they are important at the organismal and community level, cannot currently be disentangled from each other or from the more significant effects of climate change stressors on coral reefs.more » « less
An official website of the United States government

