skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Deterministic enumeration of all minimum k-cut-sets in hypergraphs for fixed k
Award ID(s):
1907937 1814613
PAR ID:
10330659
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We produce an explicit description of the K-theory and K-homology of the pure braid group on n strands. We describe the Baum–Connes correspondence between the generators of the left- and right-hand sides for n = 4. Using functoriality of the assembly map and direct computations, we recover Oyono-Oyono’s result on the Baum–Connes conjecture for pure braid groups [24]. We also discuss the case of the full braid group on 3-strands. 
    more » « less
  2. In this paper, we study k-means++ and k-means++ parallel, the two most popular algorithms for the classic k-means clustering problem. We provide novel analyses and show improved approximation and bi-criteria approximation guarantees for k-means++ and k-means++ parallel. Our results give a better theoretical justification for why these algorithms perform extremely well in practice. We also propose a new variant of k-means++ parallel algorithm (Exponential Race k-means++) that has the same approximation guarantees as k-means++. 
    more » « less