skip to main content


Title: A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications
A refractive index of dielectrics was modified by several methods and was known to have direct influence on optical forces in nanophotonic structures. The present contribution shows that isomerization of photoswitching molecules can be used to regulate refractive index of dielectrics in-situ. In particular, spectroscopic study of a polydimethylsiloxane–arylazopyrazole (PDMS–AAP) composite revealed that refractive index of the composite shifts from 2.0 to 1.65 in trans and cis states, respectively, of the embedded AAP. Based on this, a proposition is made for a waveguide structure, in which external UV/Vis source reversibly regulates the conformation of the PDMS–AAP core. Computational study is performed using Maxwell’s equations on buried waveguide structure. The simulation, implemented in PYTHON, sequentially utilizes empirical refractive indices of the composite in the isomeric states in lieu of regulation by a source. The simulation revealed highly confined wave propagations for injected signals of 340 and 450 nm wavelengths. It is observed that the cis state suppresses higher order mode when propagating UV wavelength but allows it for visible light. This modal tuning demonstrated that single mode can be selectively excited with appropriate waveguide dimensions. Further impact of the tuning is seen in the optical force between waveguide pair where the forces shift between attractive and repulsive in relation to the isomeric state of the PDMS–AAP core. These effects which stem from the adjustment of refractive index by photoisomerization suggests that in-situ regulation of index is achievable by successful integration of photoswitching molecules in host materials, and the current PDMS–AAP composites investigated in this study can potentially enhance nanophotonic and opto-mechanical platforms.  more » « less
Award ID(s):
1827820
NSF-PAR ID:
10330761
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
14
Issue:
5
ISSN:
2073-4360
Page Range / eLocation ID:
896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Microsphere Photolithography (MPL) is a nanopatterning technique that utilizes a self-assembled monolayer of microspheres as an optical element to focus incident radiation inside a layer of photoresist. The microspheres produces a sub-diffraction limited photonic-jet on the opposite side of each microsphere from the illumination. When combined with pattern transfer techniques such as etching/lift-off, MPL provides a versatile, low-cost fabrication method for producing hexagonal close-packed metasurfaces. This article investigates the MPL process for creating refractive index (RI) sensors on the cleaved tips of optical fiber. The resonant wavelength of metal elements on the surface is dependent on the local dielectric environment and allows the refractive index of an analyte to be resolved spectrally. A numerical study of hole arrays defined in metal films shows that the waveguide mode provides good sensitivity to the analyte refractive index. This can be readily tuned by adjusting the MPL exposure and the simulation results guide the fabrication of a defect tolerant refractive index sensor on the tip of a fiber tip with a sensitivity of 613 nm/RIU. The conformal nature of the microsphere monolayer simplifies the fabrication process and provides a viable alternative to direct-write techniques such as Focused Ion Beam (FIB) milling 
    more » « less
  2. null (Ed.)
    Abstract All-dielectric nanostructures have recently opened exciting opportunities for functional nanophotonics, owing to their strong optical resonances along with low material loss in the near-infrared range. Pushing these concepts to the visible range is hindered by their larger absorption coefficient, thus encouraging the search for alternative dielectrics for nanophotonics. Here, we employ bandgap engineering to synthesize hydrogenated amorphous Si nanoparticles (a-Si:H NPs) offering ideal features for functional nanophotonics. We observe significant material loss suppression in a-Si:H NPs in the visible range caused by hydrogenation-induced bandgap renormalization, producing strong higher-order resonant modes in single NPs with Q factors up to ~100 in the visible and near-IR range. We also realize highly tunable all-dielectric meta-atoms by coupling a-Si:H NPs to photochromic spiropyran molecules. ~70% reversible all-optical tuning of light scattering at the higher-order resonant mode under a low incident light intensity is demonstrated. Our results promote the development of high-efficiency visible nanophotonic devices. 
    more » « less
  3. Nanostructures have been widely applied on superhydrophobic surfaces for controlling the wetting states of liquid microdroplets. Many modern optic devices including sensors are also integrated with micro- or nanostructures for function enhancement. However, it is rarely reported that both microfluidics and optics are compatibly integrated in the same nanostructures. In this paper, a novel microfluidic-controlled tunable filter composed of an array of periodic micro/nanopillars on top of a planar waveguide is proposed and numerically simulated, in which the periodic pillars endow both the Bragg grating and the superhydrophobic functions. The tunability of grating is achieved by controlling the sagging depth of a liquid droplet into the periodic pillars. Simulation results show that a narrow bandwidth of 0.4 nm and a wide wavelength tuning range over 25 nm can be achieved by such a microfluidic-based tunable optofluidic waveguide Bragg grating filter. Moreover, this proposed scheme can be easily modified as a refractive index sensor with a sensitivity of 103 nm per refractive index unit. 
    more » « less
  4. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  5. We report the realization of efficiently coupled 3D tapered waveguide-to-fiber couplers (TWCs) based on standard lithography techniques. The 3D TWC design is capable of achieving highly efficient flat-cleaved fiber to silicon nitride photonic waveguide coupling, withT ≈ 95 % polarization-insensitive coupling efficiency, wide bandwidth, and good misalignment tolerance. Our fabricated 3D TWCs on a functional nanophotonic circuit achieveT ≈ 85% coupling efficiency. Beyond applications in high-efficiency photon coupling, the demonstrated 3D lithography technique provides a complementary approach for mode field shaping and effective refractive index engineering, potentially useful for general applications in integrated photonic circuits.

     
    more » « less