We demonstrate imaging of individual modes in a femtosecond laser written multimode waveguide by spatial-heterodyne interferometry and decomposition in data post-processing. Despite the spatial and temporal overlap between multiple waveguide modes, we show the extraction of amplitude for each individual mode and their corresponding temporal dynamics. The mode imaging scheme is effective with the presence of intermodal interference and can be prospective for sensing of ultrafast phase and refractive index fluctuations. We also reconstruct the two-dimensional transverse refractive index map of the multimode waveguide leveraging all the imaged modes and substantiate the reconstructed index map by simulation.
more »
« less
A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications
A refractive index of dielectrics was modified by several methods and was known to have direct influence on optical forces in nanophotonic structures. The present contribution shows that isomerization of photoswitching molecules can be used to regulate refractive index of dielectrics in-situ. In particular, spectroscopic study of a polydimethylsiloxane–arylazopyrazole (PDMS–AAP) composite revealed that refractive index of the composite shifts from 2.0 to 1.65 in trans and cis states, respectively, of the embedded AAP. Based on this, a proposition is made for a waveguide structure, in which external UV/Vis source reversibly regulates the conformation of the PDMS–AAP core. Computational study is performed using Maxwell’s equations on buried waveguide structure. The simulation, implemented in PYTHON, sequentially utilizes empirical refractive indices of the composite in the isomeric states in lieu of regulation by a source. The simulation revealed highly confined wave propagations for injected signals of 340 and 450 nm wavelengths. It is observed that the cis state suppresses higher order mode when propagating UV wavelength but allows it for visible light. This modal tuning demonstrated that single mode can be selectively excited with appropriate waveguide dimensions. Further impact of the tuning is seen in the optical force between waveguide pair where the forces shift between attractive and repulsive in relation to the isomeric state of the PDMS–AAP core. These effects which stem from the adjustment of refractive index by photoisomerization suggests that in-situ regulation of index is achievable by successful integration of photoswitching molecules in host materials, and the current PDMS–AAP composites investigated in this study can potentially enhance nanophotonic and opto-mechanical platforms.
more »
« less
- Award ID(s):
- 1827820
- PAR ID:
- 10330761
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 896
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the realization of efficiently coupled 3D tapered waveguide-to-fiber couplers (TWCs) based on standard lithography techniques. The 3D TWC design is capable of achieving highly efficient flat-cleaved fiber to silicon nitride photonic waveguide coupling, withT ≈ 95 % polarization-insensitive coupling efficiency, wide bandwidth, and good misalignment tolerance. Our fabricated 3D TWCs on a functional nanophotonic circuit achieveT ≈ 85% coupling efficiency. Beyond applications in high-efficiency photon coupling, the demonstrated 3D lithography technique provides a complementary approach for mode field shaping and effective refractive index engineering, potentially useful for general applications in integrated photonic circuits.more » « less
-
null (Ed.)Microsphere Photolithography (MPL) is a nanopatterning technique that utilizes a self-assembled monolayer of microspheres as an optical element to focus incident radiation inside a layer of photoresist. The microspheres produces a sub-diffraction limited photonic-jet on the opposite side of each microsphere from the illumination. When combined with pattern transfer techniques such as etching/lift-off, MPL provides a versatile, low-cost fabrication method for producing hexagonal close-packed metasurfaces. This article investigates the MPL process for creating refractive index (RI) sensors on the cleaved tips of optical fiber. The resonant wavelength of metal elements on the surface is dependent on the local dielectric environment and allows the refractive index of an analyte to be resolved spectrally. A numerical study of hole arrays defined in metal films shows that the waveguide mode provides good sensitivity to the analyte refractive index. This can be readily tuned by adjusting the MPL exposure and the simulation results guide the fabrication of a defect tolerant refractive index sensor on the tip of a fiber tip with a sensitivity of 613 nm/RIU. The conformal nature of the microsphere monolayer simplifies the fabrication process and provides a viable alternative to direct-write techniques such as Focused Ion Beam (FIB) millingmore » « less
-
null (Ed.)Abstract All-dielectric nanostructures have recently opened exciting opportunities for functional nanophotonics, owing to their strong optical resonances along with low material loss in the near-infrared range. Pushing these concepts to the visible range is hindered by their larger absorption coefficient, thus encouraging the search for alternative dielectrics for nanophotonics. Here, we employ bandgap engineering to synthesize hydrogenated amorphous Si nanoparticles (a-Si:H NPs) offering ideal features for functional nanophotonics. We observe significant material loss suppression in a-Si:H NPs in the visible range caused by hydrogenation-induced bandgap renormalization, producing strong higher-order resonant modes in single NPs with Q factors up to ~100 in the visible and near-IR range. We also realize highly tunable all-dielectric meta-atoms by coupling a-Si:H NPs to photochromic spiropyran molecules. ~70% reversible all-optical tuning of light scattering at the higher-order resonant mode under a low incident light intensity is demonstrated. Our results promote the development of high-efficiency visible nanophotonic devices.more » « less
-
Abstract Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE’s unprecedented index range and 3D writing accuracy has realized the world’s smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE’s ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.more » « less
An official website of the United States government

