skip to main content

This content will become publicly available on March 1, 2023

Title: Physical Constraints on the Extended Interstellar Medium of the z = 6.42 Quasar J1148+5251: [C ii] 158 μm , [N ii] 205 μm , and [O i] 146 μm Observations
Abstract We report new Northern Extended Millimeter Array observations of the [C ii ] 158 μ m , [N ii ] 205 μ m , and [O i ] 146 μ m atomic fine structure lines (FSLs) and dust continuum emission of J1148+5251, a z = 6.42 quasar, which probe the physical properties of its interstellar medium (ISM). The radially averaged [C ii ] 158 μ m and dust continuum emission have similar extensions (up to θ = 2.51 − 0.25 + 0.46 arcsec , corresponding to r = 9.8 − 2.1 + 3.3 kpc , accounting for beam convolution), confirming that J1148+5251 is the quasar with the largest [C ii ] 158 μ m -emitting reservoir known at these epochs. Moreover, if the [C ii ] 158 μ m emission is examined only along its NE–SW axis, a significant excess (>5.8 σ ) of [C ii ] 158 μ m emission (with respect to the dust) is detected. The new wide-bandwidth observations enable us to accurately constrain the continuum emission, and do not statistically require the presence of broad [C ii ] 158 μ m line wings that were reported in previous studies. We also report the first detection more » of the [O i ] 146 μ m and (tentatively) [N ii ] 205 μ m emission lines in J1148+5251. Using FSL ratios of the [C ii ] 158 μ m , [N ii ] 205 μ m , [O i ] 146 μ m , and previously measured [C i ] 369 μ m emission lines, we show that J1148+5251 has similar ISM conditions compared to lower-redshift (ultra)luminous infrared galaxies. CLOUDY modeling of the FSL ratios excludes X-ray-dominated regions and favors photodissociation regions as the origin of the FSL emission. We find that a high radiation field (10 3.5–4.5 G 0 ), a high gas density ( n ≃ 10 3.5–4.5 cm −3 ), and an H i column density of 10 23 cm −2 reproduce the observed FSL ratios well. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1910107
Publication Date:
NSF-PAR ID:
10330921
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
2
Page Range or eLocation-ID:
152
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With ΣSFR∼ 4200Myr−1kpc−2, SPT 0346–52 (z= 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii] 205μm, [Cii] 158μm, [Oi] 146μm, and undetected [Nii] 122μm and [Oi] 63μm emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudyand find a supersolar metallicity system. We calculateTdust= 48.3 K andλpeak= 80μm and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withne< 32 cm−3, while ∼20% of the [Cii] 158μm emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass.

  2. We present a multiline survey of the interstellar medium (ISM) in two z  > 6 quasar host galaxies, PJ231−20 ( z  = 6.59) and PJ308−21 ( z  = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up  = 7, 10, 15, 16), H 2 O 3 12  − 2 21 , 3 21  − 3 12 , 3 03  − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up  ≤ 7, while the J up  ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up  > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21  − 3 12 line detection in the same quasar places this object on the L H 2 O  −  L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H  ∼ 0.8 × 10 5 cm −3 , N H  = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn.« less
  3. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. Themore »analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

    « less
  4. ABSTRACT

    We present new [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$ observations of five bright z ∼ 7 Lyman-break galaxies spectroscopically confirmed by ALMA through [${\rm C\, {\small II}}$] 158 $\mu \mathrm{{m}}$, unlike recent [${\rm O\, {\small III}}$] detections where Lyman α was used. This nearly doubles the sample of Epoch of Reionization galaxies with robust (5σ) [${\rm C\, {\small II}}$] and [${\rm O\, {\small III}}$] detections. We perform a multiwavelength comparison with new deep HST images of the rest-frame UV, whose compact morphology aligns well with [${\rm O\, {\small III}}$] tracing ionized gas. In contrast, we find more spatially extended [${\rm C\, {\small II}}$] emission likely produced in neutral gas, as indicated by an [${\rm N\, {\small II}}$] 205-$\mu \mathrm{{m}}$ non-detection in one source. We find a correlation between the optical ${[{\rm O\, {\small III}}]}+ {\mathrm{H\,\beta }}$ equivalent width and [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$], as seen in local metal-poor dwarf galaxies. cloudy models of a nebula of typical density harbouring a young stellar population with a high-ionization parameter adequately reproduce the observed lines. Surprisingly, however, our models fail to reproduce the strength of [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$, unless we assume an α/Fe enhancement and near-solar nebular oxygenmore »abundance. On spatially resolved scales, we find [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$] shows a tentative anticorrelation with infrared excess, LIR/LUV, also seen on global scales in the local Universe. Finally, we introduce the far-infrared spectral energy distribution fitting code mercurius to show that dust-continuum measurements of one source appear to favour a low dust temperature and correspondingly high dust mass. This implies a high stellar metallicity yield and may point towards the need of dust production or grain-growth mechanisms beyond supernovae.

    « less
  5. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], ormore »[C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn.« less