Synthetic data is highly useful for training machine learning systems performing image-based 3D reconstruction, as synthetic data has applications in both extending existing generalizable datasets and being tailored to train neural networks for specific learning tasks of interest. In this paper, we introduce and utilize a synthetic data generation suite capable of generating data given existing 3D scene models as input. Specifically, we use our tool to generate image sequences for use with Multi-View Stereo (MVS), moving a camera through the virtual space according to user-chosen camera parameters. We evaluate how the given camera parameters and type of 3D environment affect how applicable the generated image sequences are to the MVS task using five pre-trained neural networks on image sequences generated from three different 3D scene datasets. We obtain generated predictions for each combination of parameter value and input image sequence, using standard error metrics to analyze the differences in depth predictions on image sequences across 3D datasets, parameters, and networks. Among other results, we find that camera height and vertical camera viewing angle are the parameters that cause the most variation in depth prediction errors on these image sequences.
more »
« less
3DVNet: Multi-View Depth Prediction and Volumetric Refinement
We present 3DVNet, a novel multi-view stereo (MVS) depth-prediction method that combines the advantages of previous depth-based and volumetric MVS approaches. Our key idea is the use of a 3D scene-modeling network that iteratively updates a set of coarse depth predictions, resulting in highly accurate predictions which agree on the underlying scene geometry. Unlike existing depth-prediction techniques, our method uses a volumetric 3D convolutional neural network (CNN) that operates in world space on all depth maps jointly. The network can therefore learn meaningful scene-level priors. Furthermore, unlike existing volumetric MVS techniques, our 3D CNN operates on a feature-augmented point cloud, allowing for effective aggregation of multi-view information and flexible iterative refinement of depth maps. Experimental results show our method exceeds state-of-the-art accuracy in both depth prediction and 3D reconstruction metrics on the ScanNet dataset, as well as a selection of scenes from the TUM-RGBD and ICL-NUIM datasets. This shows that our method is both effective and generalizes to new settings.
more »
« less
- Award ID(s):
- 1911230
- PAR ID:
- 10332237
- Date Published:
- Journal Name:
- 2021 International Conference on 3D Vision (3DV)
- Page Range / eLocation ID:
- 700 to 709
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a system that uses a convolution neural network (CNN) to estimate depth from a stereo pair followed by volumetric fusion of the predicted depth maps to produce a 3D reconstruction of a scene. Our proposed depth refinement architecture, predicts view-consistent disparity and occlusion maps that helps the fusion system to produce geometrically consistent reconstructions. We utilize 3D dilated convolutions in our proposed cost filtering network that yields better filtering while almost halving the computational cost in comparison to state of the art cost filtering architectures. For feature extraction we use the Vortex Pooling architecture [24]. The proposed method achieves state of the art results in KITTI 2012, KITTI 2015 and ETH 3D stereo benchmarks. Finally, we demonstrate that our system is able to produce high fidelity 3D scene reconstructions that outperforms the state of the art stereo system.more » « less
-
We propose a boundary-aware multi-task deep-learning- based framework for fast 3D building modeling from a sin- gle overhead image. Unlike most existing techniques which rely on multiple images for 3D scene modeling, we seek to model the buildings in the scene from a single overhead im- age by jointly learning a modified signed distance function (SDF) from the building boundaries, a dense heightmap of the scene, and scene semantics. To jointly train for these tasks, we leverage pixel-wise semantic segmentation and normalized digital surface maps (nDSM) as supervision, in addition to labeled building outlines. At test time, buildings in the scene are automatically modeled in 3D using only an input overhead image. We demonstrate an increase in building modeling performance using a multi-feature net- work architecture that improves building outline detection by considering network features learned for the other jointly learned tasks. We also introduce a novel mechanism for ro- bustly refining instance-specific building outlines using the learned modified SDF. We verify the effectiveness of our method on multiple large-scale satellite and aerial imagery datasets, where we obtain state-of-the-art performance in the 3D building reconstruction task.more » « less
-
We present a method to map 2D image observations of a scene to a persistent 3D scene representation, enabling novel view synthesis and disentangled representation of the movable and immovable components of the scene. Motivated by the bird’s-eye-view (BEV) representation commonly used in vision and robotics, we propose conditional neural groundplans, ground-aligned 2D feature grids, as persistent and memory-efficient scene representations. Our method is trained self-supervised from unlabeled multi-view observations using differentiable rendering, and learns to complete geometry and appearance of occluded regions. In addition, we show that we can leverage multi-view videos at training time to learn to separately reconstruct static and movable components of the scene from a single image at test time. The ability to separately reconstruct movable objects enables a variety of downstream tasks using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance-level segmentation, 3D bounding box prediction, and scene editing. This highlights the value of neural groundplans as a backbone for efficient 3D scene understanding models.more » « less
-
null (Ed.)3D point cloud completion has been a long-standing challenge at scale, and corresponding per-point supervised training strategies suffered from cumbersome annotations. 2D supervision has recently emerged as a promising alternative for 3D tasks, but specific approaches for 3D point cloud completion still remain to be explored. To overcome these limitations, we propose an end-to-end method that directly lifts a single depth map to a completed point cloud. With one depth map as input, a multi-way novel depth view synthesis network (NDVNet) is designed to infer coarsely completed depth maps under various viewpoints. Meanwhile, a geometric depth perspective rendering module is introduced to utilize the raw input depth map to generate a reprojected depth map for each view. Therefore, the two parallelly generated depth maps for each view are further concatenated and refined by a depth completion network (DCNet). The final completed point cloud is fused from all refined depth views. Experimental results demonstrate the effectiveness of our proposed approach composed of aforementioned components, to produce high-quality, state-of-the-art results on the popular SUNCG benchmark.more » « less
An official website of the United States government

