skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated near-field deformation detection from mobile laser scanning for the 2014 M w 6.0 South Napa earthquake
Abstract Quantifying off-fault deformation in the near field remains a challenge for earthquake monitoring using geodetic observations. We propose an automated change detection strategy using geometric primitives generated using a deep neural network, random sample consensus and least squares adjustment. Using mobile laser scanning point clouds of vineyards acquired after the magnitude 6.0 2014 South Napa earthquake, our results reveal centimeter-level horizontal ground deformation over three kilometers along a segment of the West Napa Fault. A fault trace is detected from rows of vineyards modeled as planar primitives from the accumulated coseismic response, and the postseismic surface displacement field is revealed by tracking displacements of vineyard posts modeled as cylindrical primitives. Interpreted from the detected changes, we summarized distributions of deformation versus off-fault distances and found evidence of off-fault deformation. The proposed framework using geometric primitives is shown to be accurate and practical for detection of near-field off-fault deformation.  more » « less
Award ID(s):
1830734
PAR ID:
10332667
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Geodesy
Volume:
16
Issue:
1
ISSN:
1862-9016
Page Range / eLocation ID:
65 to 79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Fault stepovers are prime examples of geometric complexity in natural fault zones that may affect seismic hazard by determining whether an earthquake rupture continues propagating or abruptly stops. However, the long-term pattern of seismicity near-fault stepovers and underlying mechanisms of rupture jumping in the context of earthquake cycles are rarely studied. Leveraging a hybrid numerical scheme combining the finite element and the spectral boundary integral methods, FEBE, we carry out fully dynamic simulations of sequences of earthquakes and aseismic slip for both compressive and tensile stepovers with off-fault plasticity. We consider a rate-and-state friction law for the fault friction and pressure-sensitive Drucker–Prager plasticity for the off-fault bulk response. We observe that the accumulation of plastic deformation, an indication of off-fault damage, is significantly different in the two cases, with more plastic deformation projected in the overlapping region for the tensile stepover. The seismic pattern for a tensile stepover is more complex than for a compressive stepover, and incorporating plasticity also increases complexity, relative to the elastic case. A tensile stepover with off-fault plasticity shows rupture segmentation, temporal clustering, and frequent rupture jumping from one fault to another. These results shed light on possible mechanisms of rupture jumping in fault stepovers as well as the long-term evolution of the fault zone. 
    more » « less
  2. Abstract Repeated earthquake cycles produce topography, fault damage zones, and other geologic structures along faults. These geomorphic and structural features indicate the presence of co‐seismic permanent (inelastic) surface deformation, yet a long‐standing question in earthquake research is how much of the co‐seismic deformation field is elastic versus inelastic. These questions arise in part because it is unclear what measurable co‐seismic characteristics, such as off‐fault or distributed surface deformation and cracking, represent true unrecoverable deformation. One emerging descriptor of permanent co‐seismic deformation is surface strain magnitudes inferred from imaging geodesy observations. In this study, we present the surface strain field of the 2013 Mw7.7 Baluchistan strike‐slip earthquake in southern Pakistan. We invert co‐seismic displacement fields generated from pixel‐tracking of SPOT‐5 and WorldView optical imagery for co‐seismic surface horizontal strain tensors. We observe that co‐seismic strain field is dominated by negative dilatation strains, indicating that the co‐seismic fault zone contracted during the earthquake. We show that co‐seismic inelastic failure exhibits a relatively consistent width along the rupture that is localized to a zone 100–200 m wide on the hanging wall side. The width of co‐seismic permanent deformation does not correlate with variations in off‐fault deformation or surface geology. Based on comparisons to other recent earthquakes, we posit that the permanent surface strains reflect inelastic deformation of the faults inner damage zone, and that the width of this zone reflects fault maturity. 
    more » « less
  3. Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ. 
    more » « less
  4. Abstract The environmental fates and consequences of intensive sulfur (S) applications to croplands are largely unknown. In this study, we used S stable isotopes to identify and trace agricultural S from field-to-watershed scales, an initial and timely step toward constraining the modern S cycle. We conducted our research within the Napa River Watershed, California, US, where vineyards receive frequent fungicidal S sprays. We measured soil and surface water sulfate concentrations ([SO42−]) and stable isotopes (δ34S–SO42−), which we refer to in combination as the ‘S fingerprint’. We compared samples collected from vineyards and surrounding forests/grasslands, which receive background atmospheric and geologic S sources. Vineyardδ34S–SO42−values were 9.9 ± 5.9‰ (median ± interquartile range), enriched by ∼10‰ relative to forests/grasslands (−0.28 ± 5.7‰). Vineyards also had roughly three-fold higher [SO42−] than forests/grasslands (13.6 and 5.0 mg SO42−–S l−1, respectively). Napa Riverδ34S–SO42−values, reflecting the watershed scale, were similar to those from vineyards (10.5 ± 7.0‰), despite vineyard agriculture constituting only ∼11% of the watershed area. Combined, our results provide important evidence that agricultural S is traceable at field-to-watershed scales, a critical step toward determining the consequences of agricultural alterations to the modern S cycle. 
    more » « less
  5. Abstract Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data. 
    more » « less