skip to main content

This content will become publicly available on January 11, 2023

Title: Multiscale Photonic Emissivity Engineering for Relativistic Lightsail Thermal Regulation
The Breakthrough Starshot Initiative aims to send a gram-scale probe to our nearest extrasolar neighbors using a laser-accelerated lightsail traveling at relativistic speeds. Thermal management is a key lightsail design objective because of the intense laser powers required but has generally been considered secondary to accelerative performance. Here, we demonstrate nanophotonic photonic crystal slab reflectors composed of 2H-phase molybdenum disulfide and crystalline silicon nitride, highlight the inverse relationship between the thermal band extinction coefficient and the lightsail’s maximum temperature, and examine the trade-off between minimizing acceleration distance and setting realistic sail thermal limits, ultimately realizing a thermally endurable acceleration minimum distance of 23.3 Gm. We additionally demonstrate multiscale photonic structures featuring thermal-wavelength-scale Mie resonant geometries and characterize their broadband Mie resonance-driven emissivity enhancement and acceleration distance reduction. More broadly, our results highlight new possibilities for simultaneously controlling optical and thermal response over broad wavelength ranges in ultralight nanophotonic structures.
Authors:
; ; ; ; ; ;
Award ID(s):
1845933
Publication Date:
NSF-PAR ID:
10333020
Journal Name:
Nano letters
Volume:
22
Issue:
2
Page Range or eLocation-ID:
594–601
ISSN:
1530-6984
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tuning and reconfiguring of nanophotonic components are needed to realize systems incorporating many components. The electrostatic force can deform a structure and tune its optical response. Despite the success of electrostatic actuators, they suffer from trade-offs between tuning voltage, tuning range, and on-chip area. Piezoelectric actuation could resolve these challenges, but only pm-per-volt scale wavelength tunability has been achieved. Here we propose and demonstrate compact piezoelectric actuators, called nanobenders, that transduce tens of nanometers per volt. By leveraging the non-uniform electric field from submicron electrodes, we generate bending of a piezoelectric nanobeam. Combined with a sliced photonic crystal cavity to sense displacement, we show tuning of an optical resonance by ~ 5 nm V−1 (0.6 THz V−1) and between 1520 ~ 1560 nm (~ 400 linewidths) within 4 V. Finally, we consider tunable nanophotonic components enabled by the nanobenders.

  2. There are a range of fundamental challenges associated with scaling optoelectronic devices down to the nano-scale, and the past decades have seen significant research dedicated to the development of sub-diffraction-limit optical devices, often relying on the plasmonic response of metal structures. At the longer wavelengths associated with the mid-infrared, dramatic changes in the optical response of traditional nanophotonic materials, reduced efficiency optoelectronic active regions, and a host of deleterious and/or parasitic effects makes nano-scale optoelectronics at micro-scale wavelengths particularly challenging. In this Perspective, we describe recent work leveraging a class of infrared plasmonic materials, highly doped semiconductors, which not only support sub-diffraction-limit plasmonic modes at long wavelengths, but which can also be integrated into a range of optoelectronic device architectures. We discuss how the wavelength-dependent optical response of these materials can serve a number of different photonic device designs, including dielectric waveguides, epsilon-near-zero dynamic optical devices, cavity-based optoelectronics, and plasmonic device architectures. We present recent results demonstrating that the highly doped semiconductor class of materials offers the opportunity for monolithic, all-epitaxial, device architectures out-performing current state of the art commercial devices, and discuss the perspectives and promise of these materials for infrared nanophotonic optoelectronics.

  3. Photonic Network-on-Chips (PNoCs) offer promising benefits over Electrical Network-on-Chips (ENoCs) in many-core systems owing to their lower latencies, higher bandwidth, and lower energy-per-bit communication with negligible data-dependent power. These benefits, however, are limited by a number of challenges. Microring resonators (MRRs) that are used for photonic communication have high sensitivity to process variations and on-chip thermal variations, giving rise to possible resonant wavelength mismatches. State-of-the-art microheaters, which are used to tune the resonant wavelength of MRRs, have poor efficiency resulting in high thermal tuning power. In addition, laser power and high static power consumption of drivers, serializers, comparators, and arbitration logic partially negate the benefits of the sub-pJ operating regime that can be obtained with PNoCs. To reduce PNoC power consumption, this paper introduces WAVES, a wavelength selection technique to identify and activate the minimum number of laser wavelengths needed, depending on an application's bandwidth requirement. Our results on a simulated 2.5D manycore system with PNoC demonstrate an average of 23% (resp. 38%) reduction in PNoC power with only <;1% (resp. <;5%) loss in system performance.
  4. Abstract Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches. The lack of modularization and lumped element reconfigurability in photonics has prevented the transition to an all-optical analog computing platform. Here, we explore, using numerical simulation, a nanophotonic platform based on epsilon-near-zero materials capable of solving in the analog domain partial differential equations (PDE). Wavelength stretching in zero-index media enables highly nonlocal interactions within the board based on the conduction of electric displacement, which can be monitored to extract the solution of a broad class of PDE problems. By exploiting the experimentally achieved control of deposition technique through process parameters, used in our simulations, we demonstrate the possibility of implementing the proposed nano-optic processor using CMOS-compatible indium-tin-oxide, whose optical properties can be tuned by carrier injection to obtain programmability at high speeds and low energy requirements. Our nano-optical analog processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light.
  5. Context. The ionization feedback from H  II regions modifies the properties of high-mass starless clumps (HMSCs, of several hundred to a few thousand solar masses with a typical size of 0.1–1 pc), such as dust temperature and turbulence, on the clump scale. The question of whether the presence of H  II regions modifies the core-scale (~0.025 pc) fragmentation and star formation in HMSCs remains to be explored. Aims. We aim to investigate the difference of 0.025 pc-scale fragmentation between candidate HMSCs that are strongly impacted by H  II regions and less disturbed ones. We also search for evidence of mass shaping and induced star formation in the impacted candidate HMSCs. Methods. Using the ALMA 1.3 mm continuum, with a typical angular resolution of 1.3′′, we imaged eight candidate HMSCs, including four impacted by H  II regions and another four situated in the quiet environment. The less-impacted candidate HMSCs are selected on the basis of their similar mass and distance compared to the impacted ones to avoid any possible bias linked to these parameters. We carried out a comparison between the two types of candidate HMSCs. We used multi-wavelength data to analyze the interaction between H  II regions and the impactedmore »candidate HMSCs. Results. A total of 51 cores were detected in eight clumps, with three to nine cores for each clump. Within our limited sample, we did not find a clear difference in the ~0.025 pc-scale fragmentation between impacted and non-impacted candidate HMSCs, even though H  II regions seem to affect the spatial distribution of the fragmented cores. Both types of candidate HMSCs present a thermal fragmentation with two-level hierarchical features at the clump thermal Jeans length λ J,clump th and 0.3 λ J,clump th . The ALMA emission morphology of the impacted candidate HMSCs AGAL010.214-00.306 and AGAL018.931-00.029 sheds light on the capacities of H  II regions to shape gas and dust in their surroundings and possibly to trigger star formation at ~0.025 pc-scale in candidate HMSCs. Conclusions. The fragmentation at ~0.025 pc scale for both types of candidate HMSCs is likely to be thermal-dominant, meanwhile H  II regions probably have the capacity to assist in the formation of dense structures in the impacted candidate HMSCs. Future ALMA imaging surveys covering a large number of impacted candidate HMSCs with high turbulence levels are needed to confirm the trend of fragmentation indicated in this study.« less