skip to main content


Title: Capillary forces drive buckling, plastic deformation, and break-up of 3D printed beams
Capillary forces acting at the interfaces of soft materials lead to deformations over the scale of the elastocapillary length. When surface stresses exceed a material's yield stress, a plastocapillary effect is expected to arise, resulting in yielding and plastic deformation. Here, we explore the interfacial instabilities of 3D-printed fluid and elastic beams embedded within viscoelastic fluids and elastic solid support materials. Interfacial instabilities are driven by the immiscibility between the paired phases or their solvents. We find that the stability of an embedded structure is predicted from the balance between the yield stress of the elastic solid, τ y , the apparent interfacial tension between the materials, γ ′, and the radius of the beam, r , such that τ y > γ ′/ r . When the capillary forces are sufficiently large, we observe yielding and failure of the 3D printed beams. Furthermore, we observe new coiling and buckling instabilities emerging when elastic beams are embedded within viscous fluid support materials. The coiling behavior appear analogous to elastic rope coiling whereas the buckling instability follows the scaling behavior predicted from Euler–Bernoulli beam theory.  more » « less
Award ID(s):
1711543
NSF-PAR ID:
10333234
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
14
ISSN:
1744-683X
Page Range / eLocation ID:
3886 to 3894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.

     
    more » « less
  2. Summary Lay Description

    Understanding how fluids are transported through porous materials is pertinent to many important societal processes in the environment (e.g. groundwater flow for drinking water) and industry (e.g. drying of industrial materials such as pulp and paper). To develop accurate models and theories of this fluid transportation, experiments need to track fluids in 3‐dimensions quickly. This is difficult to do as most materials are opaque and therefore cameras cannot capture fluid movement directly. But, with the help of x‐rays, scientists can track fluids in 3D using an imaging technique called x‐ray microtomography (μCT). Standard μCT takes about 15 minutes for one image which can produce blurry images if fluids are flowing quickly through the material. We present a technique, fast μCT, which uses a larger spectrum of x‐rays than the standard technique and acquires a 3D image in 14 seconds. With the large amount of x‐rays utilized in this technique, bubbles can start to form in the fluids from x‐ray exposure. We optimized the utilized x‐ray spectrum to limit bubble formation while still achieving a rapid 3D image acquisition that has adequate image quality and contrast. With this technique, scientists can study fluid transport in 3D porous materials in near real‐time for the improvement of models used to ensure public and environmental health.

     
    more » « less
  3. Introductory steel design courses focus on the analysis and design of primary members, which typically include tension members and connections, compression members, flexural members, and beam-columns. Introducing structural steel design concepts to students presents its fair share of challenges. First, it is difficult for students to visualize and accurately predict the potential failure modes of a tension member: yielding of the gross section, rupture of the net section, and block shear. Second, it is also difficult for students to visualize the buckling modes of steel columns, which vary with shape and type of bracing. Students particularly struggle with the determination of buckling modes between strong and weak axes based on effective lengths. Third, flexural failure modes of steel beams are very difficult for students to visualize and understand when each mode controls. The failure modes are complex and fall into three categories for compact shapes: yielding of the cross section, inelastic lateral torsional buckling, and elastic lateral torsional buckling, which is dependent on the unbraced length of the compression flange. Non-compact sections also include local buckling of the flange or web, but identifying the relationship between the unbraced length and beam span and how the unbraced length affects the flexural capacity tends to be the most difficult concept for students to grasp. This paper provides a detailed overview of the design, fabrication, and implementation of three large-scale experiential learning modules for an undergraduate steel design course. The first module focuses on the tension connections by providing physical models of various failure types including yielding of the gross section, rupture of the net section, and block shear; the second module focuses on the capacity of columns with different amounts of lateral bracing about the weak axis; and the third module focuses on the flexural strength of a beam with different unbraced lengths to illustrate the difference between lateral torsional buckling and flange local buckling/yielding of the gross section. The three modules were used throughout the steel design course at Saint Louis University and Rose-Hulman Institute of Technology to illustrate the failure mechanisms associated with the design of steel structures. 
    more » « less
  4. Abstract

    Nanoparticle 3D printing and sintering is a promising method to achieve freeform interconnects on compliant substrates for applications such as soft robotics and wearable healthcare devices. However, previous strategies to sinter metallic nanoparticles while preserving the soft polymer substrate are rife with problems such as cracking and low conductivity of the metallic features. In this paper, the mechanisms of cracking in nanoparticle‐based 3D printed and sintered stretchable interconnects are identified and architecture and processing strategies are demonstrated to achieve crack‐free interconnects fully embedded in thin (<100 μm in thickness) stretchable polydimethylsiloxane (PDMS) with external connectivity. Capillary forces between nanoparticles developed through rapid solvent evaporation in the colloidal ink is hypothesized to initiate cracking during drying. Additionally, the presence of oxygen promotes the removal of organic surfactants and binders in the nanoparticle ink which increases nanoparticle agglomeration, grain growth, and subsequently conductivity. An experimental step‐wise variation of the thermal/atmospheric process conditions supports this hypothesis and shows that the presence of air during a low temperature drying step reduces the capillary stress to produce crack‐free interconnects with high conductivities (up to 56% of bulk metal) while having an excellent compatibility with the underlying polymer materials. Finally, stretchable interconnects fully‐encapsulated in PDMS polymer, with 3D pillar architectures for external connectivity are demonstrated, thus also solving an important “last‐mile” problem in the packaging of stretchable electronics.

     
    more » « less
  5. At the appropriate length scales, capillary forces exerted by a liquid in contact with a compliant solid can cause the solid's deformation. Capillary forces are also able to align particles with discrete wettabilities – or Janus particles – at liquid interfaces. Their amphiphilic properties enable Janus particles to orient themselves at liquid interfaces such that both of their surfaces are facing their preferred fluid. However, it is unclear how to spontaneously obtain varying degrees of rotational alignment. Here we extend ideas of elasto-capillarity to modulate rotational alignment by connecting amphiphilic Janus cylinders in an antisymmetric configuration. As the Janus cylinders rotate they cause a twisting deformation of rod. We develop both a mathematical model and a physical macroscale setup to relate the angle of twist to the elastic and interfacial properties, which can be used to tune the extent of alignment of Janus particles at air–water interfaces. We additionally extend our analysis to calculate the twist profile on a compliant element with a distributed capillary torque. 
    more » « less