skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effectiveness of Synchronous vs Asynchronous Modes of Instruction in an Online Flipped Design Thinking Course
Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other.  more » « less
Award ID(s):
2110799
PAR ID:
10333488
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article describes findings from the Survey of Student Perceptions of Remote Teaching and Learning, which was administered to a random national sample of 1,008 U.S. undergraduates taking for-credit college courses that began with in-person classes and shifted to remote instruction in spring 2020. Course satisfaction levels were much lower after courses moved online, and students recounted an array of barriers to their continued learning. More than 1 in 6 students experienced frequent internet connectivity issues and/or hardware and software problems severe enough to interfere with their ability to continue learning in their courses. Students from all backgrounds struggled to stay motivated and missed getting immediate instructor feedback and collaborating with their fellow students. Students of color and students from lower-income households experienced more challenges than did non-Hispanic White students and students from higher-income households. However, even with the challenges of an unplanned shift to remote learning, a majority of students were at least somewhat satisfied with their learning in the course after COVID, and satisfaction was higher for those courses using more of the practices recommended for effective online instruction. 
    more » « less
  2. Starting in March 2020, the COVID19 pandemic instantly affected the education of 14 million higher education students in the USA. The switch to remote instruction caught instructors and students off guard – teachers had to change their techniques, approaches, and course content rapidly (called “panicgogy”), and students had to adjust to remote instruction in a hurry. Hoping that the pandemic would not last too long, most had expected to return to the regular class format at most by the Fall semester. That expectation was quickly squashed as the summer semester progressed. If one were teaching a face-to-face classroom in a flipped modality, it would be even more challenging to teach a flipped class in an online environment. In this paper, we present how the instructor overhauled a face-to-face flipped class in Numerical Methods to an online environment. This involved 1) rethinking the learning design of the course content via the learning management system, 2) using Microsoft forms as personal response systems, and YouTube for video lectures, 3) not only using break-out rooms for peer-to-peer learning but the “main room” for individual learning as well, 4) exploit the availability of two computers and multiple monitors to deliver and observe the synchronous part of the class, 5) use of discussion boards to streamline the flow of communication that would have otherwise been unwieldy for the instructor, TAs, and students alike, 6) changes made to assessment as it had to be carried online and within a proctoring software environment, 7) changes in the conducting of office hours. The above items will be discussed in the paper, and comparisons of face-to-face and online implementations will be made. The ultimate goal is to present a logic model for a typical lecture-based online flipped STEM classroom for efficient and effective implementation by other instructors. 
    more » « less
  3. In this study, flipped instruction in an undergraduate engineering course in the ‘COVID’ online, remote environment was conducted and compared to onsite flipped instruction (i.e. pre-COVID) to explore potential changes in student perceptions. Student perceptions were gathered via survey instruments and investigated further through instructor interviews. This analysis was done at three universities and made possible by extensive research with the flipped classroom at these three schools as part of a previous NSF-funded study between 2014 and 2016. Results gathered in the online remote setting suggest positive changes in student perceptions of flipped instruction compared to the onsite environment, including the decreased perception of the ‘load’ imposed by the flipped classroom and the ‘effort‘’ required. Some desirable outcomes remained unchanged in the remote setting. The recent and emerging literature has suggested the remote, online environment dictated by the pandemic may be beneficial for flipped teaching and learning. These and other findings from conducting flipped classrooms at three engineering schools in the online environment are presented, including perceptions of the classroom environment (via the College and University Environment Inventory), benefits and drawbacks identified, student motivation levels, and perceived learning. 
    more » « less
  4. Introduction: Inquiry-based learning is vital to the engineering design process, and most crucially in the laboratory and hands-on settings. Through the model of inquiry-based design, student teams are able to formulate critical inputs to the design process and develop a stronger and more relevant understanding of theoretical principles and their applications. In the junior-level Biotransport laboratory course at Purdue University’s Weldon School of BME, the curriculum utilizes the engineering design process to guide students through three (3) different modules covering different Biotransport phenomena (diffusivity, mass transport, and heat transfer). Students are required to research, conceptualize, and generate hypotheses around a module prompt. Students design, execute, and analyze their own experimental setups to test the hypotheses within an autodidactic peer-learning structure. Methods: A multi-year study was completed spanning from 2014 to 2016, assessing students’ end of course evaluations. With an integration of the flipped lecture into the lab being first implemented in 2015 (prior to 2015, the flipped lecture was a stand-alone course offered outside of the lab sections), the data presented here offers a comparison of student evaluations between these two course structures. Per the student response rates, the sample size for each year was: n=81 (2016); n=60 (2015); n=48 (2014). The surveys were anonymous and a host of questions related to overall course satisfaction, structure, and content were posed. Results: Analysis of the data showed a consistent increase in overall student satisfaction with the course following the implementation of the new structure. The percent of students giving a satisfactory rating or higher for the 2014, 2015 and 2016 course offerings was 79%, 89%, 92%, respectively. This shows a significant difference between 2014 and 2016. Conclusion: The integration of a flipped lecture into the lab successfully improved student satisfaction and self-perceived understanding of course material. This format also improved the delivery of content to students as assessed by maintaining pertinence to the lab topics and clear understanding of learning concepts. 
    more » « less
  5. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less