Nanoscale single-domain bar magnets are building blocks for a variety of fundamental and applied mesoscopic magnetic systems, such as artificial spin ices, magnetic shape-morphing microbots, and magnetic majority logic gates. The magnetization reversal switching field of the bar nanomagnets is a crucial parameter that determines the physical properties and functionalities of their constituted artificial systems. Previous methods on tuning the magnetization reversal switching field of a bar nanomagnet usually relied on modifying its aspect ratio, such as its length, width, and/or thickness. Here, we show that the switching field of a bar nanomagnet saturates when extending its length beyond a certain value, preventing further tailoring of the magnetization reversal via aspect ratios. We showcase a highly tunable switching field of a bar nanomagnet by tailoring its end geometry without altering its size. This provides an easy method to control the magnetization reversal of a single-domain bar nanomagnet. It would enable new research and/or applications, such as designing artificial spin ices with additional tuning parameters, engineering magnetic microbots with more flexibility, and developing magnetic quantum-dot cellular automata systems for low power computing. 
                        more » 
                        « less   
                    
                            
                            Applications of nanomagnets as dynamical systems: II
                        
                    
    
            Abstract In Part I of this topical review, we discussed dynamical phenomena in nanomagnets, focusing primarily on magnetization reversal with an eye to digital applications. In this part, we address mostly wave-like phenomena in nanomagnets, with emphasis on spin waves in myriad nanomagnetic systems and methods of controlling magnetization dynamics in nanomagnet arrays which may have analog applications. We conclude with a discussion of some interesting spintronic phenomena that undergird the rich physics exhibited by nanomagnet assemblies. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10333710
- Date Published:
- Journal Name:
- Nanotechnology
- Volume:
- 33
- Issue:
- 8
- ISSN:
- 0957-4484
- Page Range / eLocation ID:
- 082002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We demonstrate using micromagnetic simulations that a nanomagnet array excited by surface acoustic waves (SAWs) can work as a reservoir. An input nanomagnet is excited with focused SAW and coupled to several nanomagnets, seven of which serve as output nanomagnets. To evaluate memory effect and computing capability, we study the short-term memory (STM) and parity check (PC) capacities, respectively. The SAW (4 GHz carrier frequency) amplitude is modulated to provide a sequence of sine and square waves of 100 MHz frequency. The responses of the selected output nanomagnets are processed by reading the envelope of their magnetization states, which is used to train the output weights using the regression method. For classification, a random sequence of 100 square and sine wave samples is used, of which 80% are used for training, and the rest are used for testing. We achieve 100% training and 100% testing accuracy. The average STM and PC are calculated to be ∼4.69 and ∼5.39 bits, respectively, which is indicative of the proposed acoustically driven nanomagnet oscillator array being well suited for physical reservoir computing applications. The energy dissipation is ∼2.5 times lower than a CMOS-based echo-state network. Furthermore, the reservoir is able to accurately predict Mackey-Glass time series up to several time steps ahead. Finally, the ability to use high frequency SAW makes the nanomagnet reservoir scalable to small dimensions, and the ability to modulate the envelope at a lower frequency (100 MHz) adds flexibility to encode different signals beyond the sine/square waves classification and Mackey-Glass predication tasks demonstrated here.more » « less
- 
            null (Ed.)Using time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy, we demonstrate surface-acoustic-wave (SAW) induced resonant amplification of intrinsic spin-wave (SW) modes, as well as generation of new extrinsic or driven modes at the SAW frequency, in a densely packed two-dimensional array of elliptical Co nanomagnets fabricated on a piezoelectric LiNbO 3 substrate. This system can efficiently serve as a magnonic crystal (MC), where the intrinsic shape anisotropy and the strong inter-element magnetostatic interaction trigger the incoherent precession of the nanomagnets' magnetization in the absence of any bias magnetic field, giving rise to the ‘intrinsic’ SW modes. The magnetoelastic coupling leads to a rich variety of SW phenomena when the SAW is launched along the major axis of the nanomagnets, such as 4–7 times amplification of intrinsic modes (at 3, 4, 7 and 10 GHz) when the applied SAW frequencies are resonant with these frequencies, and the generation of new extrinsic modes at non-resonant SAW frequencies. However, when the SAW is launched along the minor axis, a dominant driven mode appears at the applied SAW frequency. This reveals that the magnetoelastic coupling between SW and SAW is anisotropic in nature. Micromagnetic simulation results are in qualitative agreement with the experimental observations and elucidate the underlying dynamics. Our findings lay the groundwork for bias-field free magnonics, where the SW behavior is efficiently tuned by SAWs. It has important applications in the design of energy efficient on-chip microwave devices, SW logic, and extreme sub-wavelength ultra-miniaturized microwave antennas for embedded applications.more » « less
- 
            Conventional electromagnetic (EM) antennas cannot be aggressively miniaturized since their gain and radiation efficiency plummet when their sizes become much smaller than the radiated wavelength. Recently, we demonstrated a new genre of unconventional extreme subwavelength nano-antennas that are several orders of magnitude smaller than the wavelength they radiate, and yet they radiate efficiently, beating the conventional Harrington limits on the gain and radiation efficiency by many orders of magnitude. This is made possible by their unique unconventional mechanism of activation. These nano-antennas are implemented with 2-D periodic arrays of ∼100-nm-sized nanomagnets deposited on piezoelectric substrates. A surface acoustic wave (SAW) launched in the substrate excites resonant spin waves in the nanomagnets at discrete (GHz) frequencies via phonon–magnon coupling, which radiates EM waves very efficiently at those frequencies via magnon–photon coupling. Normally, one would expect such ultrasmall antennas to behave as point sources that radiate isotropically. Surprisingly, they do not because of the intrinsic anisotropy in the nanomagnet array. The radiation patterns in the plane of the nanomagnets and the two transverse planes are anisotropic. By changing the direction of SAW propagation in the plane of the nanomagnets, one can change the radiation patterns in all three planes, which heralds a new method of beam steering or active electronic scanning.more » « less
- 
            Prevention of integrated circuit counterfeiting through logic locking faces the fundamental challenge of securing an obfuscation key against both physical and algorithmic threats. Previous work has focused on strengthening the logic encryption to protect the key against algorithmic attacks, but failed to provide adequate physical security. In this work, we propose a logic locking scheme that leverages the non-volatility of the nanomagnet logic (NML) family to achieve both physical and algorithmic security. Polymorphic NML minority gates protect the obfuscation key against algorithmic attacks, while a strain-inducing shield surrounding the nanomagnets provides physical security via a self-destruction mechanism.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    