skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Homotopy, Homology and Persistent Homology Using Closure Spaces and Filtered Closure Spaces
Award ID(s):
1764406
PAR ID:
10334573
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
Volume:
3
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We develop persistent homology in the setting of filtrations of (Cˇech) closure spaces. Examples of filtrations of closure spaces include metric spaces, weighted graphs, weighted directed graphs, and filtrations of topological spaces. We use various products and intervals for closure spaces to obtain six homotopy theories, six cubical singular homology theories, and three simplicial singular homology theories. Applied to filtrations of closure spaces, these homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance from metric spaces to filtrations of closure spaces and use it to prove that any persistence module obtained from a homotopy-invariant functor on closure spaces is stable. 
    more » « less
  2. Abstract We give necessary and sufficient conditions for certain pushouts of topological spaces in the category of Čech’s closure spaces to agree with their pushout in the category of topological spaces. We prove that in these two categories, the constructions of cell complexes by a finite sequence of closed cell attachments, which attach arbitrarily many cells at a time, agree. Likewise, the constructions of CW complexes relative to a compactly generated weak Hausdorff space that attach only finitely many cells, also agree. On the other hand, we give examples showing that the constructions of finite-dimensional CW complexes, CW complexes of finite type, and relative CW complexes that attach only finitely many cells, need not agree. 
    more » « less
  3. null (Ed.)
    Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, $${{\mathbb{S}}}^1$$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in $${\mathbb{R}}^3$$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in $${\mathbb{R}}^3$$. 
    more » « less
  4. We can view the Lipschitz constant as a height function on the space of maps between two manifolds and ask (as Gromov did nearly 30 years ago) what its ``Morse landscape'' looks like: are there high peaks, deep valleys and mountain passes? A simple and relatively well-studied version of this question: given two points in the same component (homotopic maps), does a path between them (a homotopy) have to pass through maps of much higher Lipschitz constant? Now we also consider similar questions for higher-dimensional cycles in the space. We make this precise using the language of persistent homology and give some first results. 
    more » « less