Time lapse microscopy is a transformative technique for plant cell and developmental biology. Light sheet microscopy, which manipulates the amount of light a sample is exposed to in order to minimize phototoxicity and maximize signal intensity, is an increasingly popular tool for time lapse imaging. However, many light sheet imaging systems are not designed with the unique properties of plant samples in mind. Recent advances have decreased the cost and increased the technical accessibility of light sheet microscopy, but plant samples still require special preparation to be compatible with these new systems. Here, we apply a novel light sheet microscopy system to regenerating Arabidopsis roots damaged via laser ablation. To adapt this system for Arabidopsis roots we establish a new protocol for sample mounting, as well as an automated root tip tracking system that requires no additional proprietary software. The methods presented here can be used to increase researcher access to long-term time-lapse imaging in Arabidopsis biology.
more »
« less
Engaging new audiences with imaging and microscopy
ABSTRACT In this Spotlight, we hear first-hand accounts from five scientists and educators who use microscopy and imaging to engage, entertain, educate and inspire new audiences with science and the field of developmental biology in particular. The ‘voices’ that follow each convey each authors' own personal take on why microscopy is such a powerful tool for capturing the minds, and the hearts, of scientists, students and the public alike. They discuss how microscopy and imaging can reveal new worlds, and improve our communication and understanding of developmental biology, as well as break down barriers and promote diversity for future generations of scientific researchers.
more »
« less
- Award ID(s):
- 1656310
- PAR ID:
- 10334838
- Date Published:
- Journal Name:
- Development
- Volume:
- 148
- Issue:
- 18
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Scientific misinformation is a defining challenge of our time. As public trust in science declines and falsehoods spread faster than facts, the scientific community must rethink its role in public discourse. This Perspective draws on a scenario-based workshop entitled ‘Truth Matters: Strengthening Science Communication to Counter Misinformation’, conducted at the 20th International Congress of Developmental Biology in San Juan, Puerto Rico (June 2025), designed to train scientists in emotionally attuned, culturally responsive and effective communication strategies. At the joint conference with the International Society of Developmental Biology, the Society for Developmental Biology and the Latin American Society for Developmental Biology, we explored why misinformation persists, how identity and social belonging shape belief, and why empathy, not just evidence, is essential to making truth resonate. Here, we offer a call to action along with practical tools: to make scientific knowledge meaningful, we must communicate effectively and ensure it resonates with the broader public.more » « less
-
ABSTRACT The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A ‘think tank’ of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help ‘rebrand’ the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community.more » « less
-
Cell death is a central process in developmental biology and also an important indicator of disease status and treatment efficacy. Two related fluorescent probes are described that are molecular conjugates of one or two zinc dipicolylamine (ZnDPA) coordination complexes with an appended solvatochromic benzothiazolium squaraine dye. The probes were designed to target the anionic phospholipid, phosphatidylserine (PS), that is exposed on the surface of dead and dying cells. A series of spectrometric and microscopy studies using liposomes and red blood cell ghosts as models showed that the probe with two ZnDPA targeting units produced higher affinity, stronger fluorescence “turn-on” effect, and better image contrast than the probe with one ZnDPA. Both fluorescent probes enabled “no-wash” time-lapse microscopic imaging of mammalian cell death within a culture. The probe with two ZnDPA units was used for non-invasive time-lapse imaging of cell death during the development of Xenopus laevis (frog) embryos. In vivo fluorescence micrographs revealed probe accumulation within the embryo tail, head and spine regions that were undergoing regression and apoptosis during growth and maturation. These new fluorescent probes are likely to be useful for time-resolved, non-invasive in vivo imaging of cell death process in range of living organisms. From a broader perspective, it should be possible to utilize the negative solvatochromism exhibited by benzothiazolium squaraine dyes for development of various “turn-on” deep-red fluorescent probes and materials that target cell surface biomarkers for in vitro and in vivo imaging.more » « less
-
A comprehensive survey of regulatory network inference methods using single cell RNA sequencing datanull (Ed.)Abstract Gene regulatory network is a complicated set of interactions between genetic materials, which dictates how cells develop in living organisms and react to their surrounding environment. Robust comprehension of these interactions would help explain how cells function as well as predict their reactions to external factors. This knowledge can benefit both developmental biology and clinical research such as drug development or epidemiology research. Recently, the rapid advance of single-cell sequencing technologies, which pushed the limit of transcriptomic profiling to the individual cell level, opens up an entirely new area for regulatory network research. To exploit this new abundant source of data and take advantage of data in single-cell resolution, a number of computational methods have been proposed to uncover the interactions hidden by the averaging process in standard bulk sequencing. In this article, we review 15 such network inference methods developed for single-cell data. We discuss their underlying assumptions, inference techniques, usability, and pros and cons. In an extensive analysis using simulation, we also assess the methods’ performance, sensitivity to dropout and time complexity. The main objective of this survey is to assist not only life scientists in selecting suitable methods for their data and analysis purposes but also computational scientists in developing new methods by highlighting outstanding challenges in the field that remain to be addressed in the future development.more » « less
An official website of the United States government

