skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A unified framework for bandit multiple testing
In bandit multiple hypothesis testing, each arm corresponds to a different null hypothesis that we wish to test, and the goal is to design adaptive algorithms that correctly identify large set of interesting arms (true discoveries), while only mistakenly identifying a few uninteresting ones (false discoveries). One common metric in non-bandit multiple testing is the false discovery rate (FDR). We propose a unified, modular framework for bandit FDR control that emphasizes the decoupling of exploration and summarization of evidence. We utilize the powerful martingale-based concept of “e-processes” to ensure FDR control for arbitrary composite nulls, exploration rules and stopping times in generic problem settings. In particular, valid FDR control holds even if the reward distributions of the arms could be dependent, multiple arms may be queried simultaneously, and multiple (cooperating or competing) agents may be querying arms, covering combinatorial semi-bandit type settings as well. Prior work has considered in great detail the setting where each arm’s reward distribution is independent and sub-Gaussian, and a single arm is queried at each step. Our framework recovers matching sample complexity guarantees in this special case, and performs comparably or better in practice. For other settings, sample complexities will depend on the finer details of the problem (composite nulls being tested, exploration algorithm, data dependence structure, stopping rule) and we do not explore these; our contribution is to show that the FDR guarantee is clean and entirely agnostic to these details.  more » « less
Award ID(s):
2053804
PAR ID:
10335106
Author(s) / Creator(s):
; ;
Publisher / Repository:
Curran Associates
Date Published:
Journal Name:
35th Conference on Neural Information Processing Systems
Format(s):
Medium: X
Location:
Neural Information Processing Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. We derive new algorithms for online multiple testing that provably control false discovery exceedance (FDX) while achieving orders of magnitude more power than previous methods. This statistical advance is enabled by the development of new algorithmic ideas: earlier algorithms are more “static” while our new ones allow for the dynamical adjustment of testing levels based on the amount of wealth the algorithm has accumulated. We demonstrate that our algorithms achieve higher power in a variety of synthetic experiments. We also prove that SupLORD can provide error control for both FDR and FDX, and controls FDR at stopping times. Stopping times are particularly important as they permit the experimenter to end the experiment arbitrarily early while maintaining desired control of the FDR. SupLORD is the first non-trivial algorithm, to our knowledge, that can control FDR at stopping times in the online setting. 
    more » « less
  2. null (Ed.)
    In this paper, we introduce a new online decision making paradigm that we call Thresholding Graph Bandits. The main goal is to efficiently identify a subset of arms in a multi-armed bandit problem whose means are above a specified threshold. While traditionally in such problems, the arms are assumed to be independent, in our paradigm we further suppose that we have access to the similarity between the arms in the form of a graph, allowing us gain information about the arm means in fewer samples. Such settings play a key role in a wide range of modern decision making problems where rapid decisions need to be made in spite of the large number of options available at each time. We present GrAPL, a novel algorithm for the thresholding graph bandit problem. We demonstrate theoretically that this algorithm is effective in taking advantage of the graph structure when available and the reward function homophily (that strongly connected arms have similar rewards) when favorable. We confirm these theoretical findings via experiments on both synthetic and real data. 
    more » « less
  3. We consider the bandit problem of selecting K out of N arms at each time step. The joint reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among all possible combinations, making the action space large. To simplify the problem, existing works on combinatorial bandits typically assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-K subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without using individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in N. Further, DART achieves a regret bound of Õ(K√KNT) for a time horizon T, which matches the lower bound in bandit feedback up to a factor of √log 2NT. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments. 
    more » « less
  4. We propose and evaluate a learning-based framework to address multi-agent resource allocation in coupled wireless systems. In particular we consider, multiple agents (e.g., base stations, access points, etc.) that choose amongst a set of resource allocation options towards achieving their own performance objective /requirements, and where the performance observed at each agent is further coupled with the actions chosen by the other agents, e.g., through interference, channel leakage, etc. The challenge is to find the best collective action. To that end we propose a Multi-Armed Bandit (MAB) framework wherein the best actions (aka arms) are adaptively learned through online reward feedback. Our focus is on systems which are "weakly-coupled" wherein the best arm of each agent is invariant to others' arm selection the majority of the time - this majority structure enables one to develop light weight efficient algorithms. This structure is commonly found in many wireless settings such as channel selection and power control. We develop a bandit algorithm based on the Track-and-Stop strategy, which shows a logarithmic regret with respect to a genie. Finally through simulation, we exhibit the potential use of our model and algorithm in several wireless application scenarios. 
    more » « less
  5. We consider the problem of sequential multiple hypothesis testing with nontrivial data collection costs. This problem appears, for example, when conducting biological experiments to identify differentially expressed genes of a disease process. This work builds on the generalized α-investing framework which enables control of the marginal false discovery rate in a sequential testing setting. We make a theoretical analysis of the long term asymptotic behavior of α-wealth which motivates a consideration of sample size in the α-investing decision rule. Posing the testing process as a game with nature, we construct a decision rule that optimizes the expected α-wealth reward (ERO) and provides an optimal sample size for each test. Empirical results show that a cost-aware ERO decision rule correctly rejects more false null hypotheses than other methods for $n=1$ where n is the sample size. When the sample size is not fixed cost-aware ERO uses a prior on the null hypothesis to adaptively allocate of the sample budget to each test. We extend cost-aware ERO investing to finite-horizon testing which enables the decision rule to allocate samples in a non-myopic manner. Finally, empirical tests on real data sets from biological experiments show that cost-aware ERO balances the allocation of samples to an individual test against the allocation of samples across multiple tests. 
    more » « less