skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water
Raw wood was subjected to sequential oxidation to produce 2,3,6-tricarboxycellulose (TCC) nanofibers with a high surficial charge of 1.14 mmol/g in the form of carboxylate groups. Three oxidation steps, including nitro-oxidation, periodate, and sodium chlorite oxidation, were successfully applied to generate TCC nanofibers from raw wood. The morphology of extracted TCC nanofibers measured using TEM and AFM indicated the average length, width, and thickness were in the range of 750 ± 110, 4.5 ± 1.8, and 1.23 nm, respectively. Due to high negative surficial charges on TCC, it was studied for its absorption capabilities against Pb2+ ions. The remediation results indicated that a low concentration of TCC nanofibers (0.02 wt%) was able to remove a wide range of Pb2+ ion impurities from 5–250 ppm with an efficiency between 709–99%, whereby the maximum adsorption capacity (Qm) was 1569 mg/g with R2 0.69531 calculated from Langmuir fitting. It was observed that the high adsorption capacity of TCC nanofibers was due to the collective effect of adsorption and precipitation confirmed by the FTIR and SEM/EDS analysis. The high carboxylate content and fiber morphology of TCC has enabled it as an excellent substrate to remove Pb2+ ions impurities.  more » « less
Award ID(s):
1808690
PAR ID:
10335296
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Polysaccharides
Volume:
2
Issue:
2
ISSN:
2673-4176
Page Range / eLocation ID:
245 to 256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Rice husks are an agricultural residue of great annual production and have a high cellulose content. In this study, we have prepared highly charged carboxyl cellulose nanofibers (CNFs) from rice husks using the TEMPO-oxidation method and the extracted CNFs were evaluated as an adsorbent for the removal of lead( ii ) and lanthanum( iii ) (Pb( ii ) and La( iii )) ions from contaminated water. Three different forms of nanocellulose adsorbents were prepared: suspension, freeze-dried, and nanocomposite containing magnetic nanoparticles, where their adsorption performance was tested against the removal of the two chosen heavy metal ions. The maximum adsorption capacity of rice husk based CNFs was found to be the highest in the nanocellulose suspension, i.e. , 193.2 mg g −1 for Pb( ii ) and 100.7 mg g −1 for La( iii ). The separation of the used adsorbent in the suspension was further facilitated by the gelation of the CNFs and metal cations, where the resulting floc could be removed by gravity-driven filtration. The absorption mechanism of the investigated CNF system is mainly due to electrostatic interactions between negatively charged carboxylate groups and multivalent metal ions. It was found that 90% lanthanum content in the form of lanthanum oxychloride (determined by X-ray powder diffraction) could be obtained by incinerating the CNF/LaCl 3 gel. This study demonstrates a viable and sustainable solution to upcycle agricultural residues into remediation nanomaterials for the removal and recovery of toxic heavy metal ions from contaminated water. 
    more » « less
  2. Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water. 
    more » « less
  3. Thallium(I) (Tl(I)) pollution has become a pressing environmental issue due to its harmful effect on human health and aquatic life. Effective technology to remove Tl(I) ions from drinking water can offer immediate societal benefits especially in the developing countries. In this study, a bio-adsorbent system based on nitro-oxidized nanocellulose (NOCNF) extracted from sorghum stalks was shown to be a highly effective Tl(I) removal medium. The nitro-oxidation process (NOP) is an energy-efficient, zero-waste approach that can extract nanocellulose from any lignocellulosic feedstock, where the effluent can be neutralized directly into a fertilizer without the need for post-treatment. The demonstrated NOCNF adsorbent exhibited high Tl(I) removal efficiency (>90% at concentration < 500 ppm) and high maximum removal capacity (Qm = 1898 mg/g using the Langmuir model). The Tl(I) adsorption mechanism by NOCNF was investigated by thorough characterization of NOCNF-Tl floc samples using spectroscopic (FTIR), diffraction (WAXD), microscopic (SEM, TEM, and AFM) and zeta-potential techniques. The results indicate that adsorption occurs mainly due to electrostatic attraction between cationic Tl(I) ions and anionic carboxylate groups on NOCNF, where the adsorbed Tl(I) sites become nuclei for the growth of thallium oxide nanocrystals at high Tl(I) concentrations. The mineralization process enhances the Tl(I) removal efficiency, and the mechanism is consistent with the isotherm data analysis using the Freundlich model. 
    more » « less
  4. Abstract Access to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. Hydrogels have been explored for remediation, but they often require long times to reach high levels of adsorption. To overcome this limitation, we developed a rapid, locally formed hydrogel that adsorbs dye during gelation. These hydrogels are derived from cellulose—a renewable, nontoxic, and biodegradable resource. More specifically, we found that sulfated cellulose nanofibers or sulfated wood pulps, when mixed with a water‐soluble, cationic cellulose derivative, efficiently remove methylene blue (a cationic dye) within seconds. The maximum adsorption capacity was found to be 340 ± 40 mg methylene blue/g cellulose. As such, these localized hydrogels (and structural analogues) may be useful for remediating other pollutants. 
    more » « less
  5. In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5). 
    more » « less