skip to main content


Title: Recovery coupling in multilayer networks
Abstract The increased complexity of infrastructure systems has resulted in critical interdependencies between multiple networks—communication systems require electricity, while the normal functioning of the power grid relies on communication systems. These interdependencies have inspired an extensive literature on coupled multilayer networks, assuming a hard interdependence, where a component failure in one network causes failures in the other network, resulting in a cascade of failures across multiple systems. While empirical evidence of such hard failures is limited, the repair and recovery of a network requires resources typically supplied by other networks, resulting in documented interdependencies induced by the recovery process. In this work, we explore recovery coupling, capturing the dependence of the recovery of one system on the instantaneous functional state of another system. If the support networks are not functional, recovery will be slowed. Here we collected data on the recovery time of millions of power grid failures, finding evidence of universal nonlinear behavior in recovery following large perturbations. We develop a theoretical framework to address recovery coupling, predicting quantitative signatures different from the multilayer cascading failures. We then rely on controlled natural experiments to separate the role of recovery coupling from other effects like resource limitations, offering direct evidence of how recovery coupling affects a system’s functionality.  more » « less
Award ID(s):
1735505
NSF-PAR ID:
10336171
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Boosting critical infrastructures’ (CIs) preparedness to threats, including natural disasters and manmade attacks, is a global imperative. The intrinsic dependencies and interdependencies between CIs hinder their resiliency. Moreover, the evolution of CIs is, in many cases, en routè to tighten those interdependencies. The goal of this paper is to uncover and analyze the rising interdependency between the electric power grid, information and communication technology (ICT) networks, and transportation systems that are heavily reliant on electric-power drivetrains, collectively referred to hereafter as electro-mobility (e-mobility). E-mobility includes electric vehicles (EVs) and electric railway systems. A new influence graph-based model is introduced, as a promising approach to model operational interdependencies between CIs. Each of the links of the influence graph represents the probability of failure of the sink node following a failure of the source node. A futuristic scenario has been analyzed assuming increased dependency of the power grid on ICT for monitoring and control, and high penetration levels of EVs and distributed energy resources (DERs) in an urban region. Inspecting the influence graph shows that the impact of interdependency between the power grid, the ICT network, and the transportation network, for the case study analyzed in this paper, does not lead to failures during normal operation with proper design; however, it is severe during emergency conditions since it leads to failure propagation among the three CIs. This paper sets the stage for more research on this topic, and calls for more attention to interdependency analysis. 
    more » « less
  2. This paper studies the problem of robustifying an interdependent network by rewiring a small number of links in realtime during a cascading attack. Interdependent networks have been widely used to model interconnected complex systems such as a critical infrastructure network including both the power grid and the Internet. Realtime robustification of interdependent networks, therefore, has significant practical importance. This paper formulates the problem using the Markov decision process (MDP) framework. We first show the problem is NP-hard and then develop an effective and efficient greedy algorithm, named R EAL W IRE , to robustify the network in realtime. R EAL W IRE scores each link (and each node) based on the expected number of links failures resulted from the failure of the link (or the node), and rewires the links greedily according to the scores. Extensive experimental results show that R EAL W IRE outperforms other algorithms on multiple trobustness metrics. 
    more » « less
  3. Critical infrastructure networks, including water, power, communication, and transportation, among others, are necessary to society’s functionality. In recent years, the threat of different types of disruptions to such infrastructure networks has become an increasingly important problem to address. Due to existing interdependencies, damage to a small area of one of the networks could have far-reaching effects on the ability to meet demand across the entire system. Common disruption scenarios include, among others, intentional malevolent attacks, natural disasters, and random failures. Similar works have focused on only one type of scenario, but combining a variety of disruptions may lead to more realistic results. Additionally, the concept of social vulnerability, which describes an area’s ability to prepare for and respond to a disruption, must be included. This should promote not only the protection of the most at-risk components but also ensure that socially vulnerable communities are given adequate resources. This work provides a decision making framework to determine the allocation of defensive resources that accounts for all these factors. Accordingly, we propose a multi-objective mathematical model with the objectives of: (i) minimizing the vulnerability of a system of interdependent infrastructure networks, and (ii) minimizing the total cost of the resource allocation strategy. Moreover, to account for uncertainty in the proposed model, this paper incorporates a means to address robustness in finding the most adaptable network protection plan to reduce the vulnerability of the system of interdependent networks to a variety of disruption scenarios. The proposed work is illustrated with an application to social vulnerability and interdependent power, gas, and water networks in Shelby County, Tennessee. 
    more » « less
  4. Phasor Measurement Units (PMU), due to their capability for providing highly precise and time-synchronized measurements of synchrophasors, have now become indispensable in wide area monitoring of power-grid systems. Successful and reliable delivery of synchrophasor packets from the PMUs to the Phasor Data Concentrators (PDCs) and beyond, requires a backbone communication network that is robust and resilient to failures. These networks are vulnerable to a range of failures that include cyber-attacks, system or device level outages and link failures. In this paper, we present a framework to evaluate the resilience of a PMU network in the context of link failures. We model the PMU network as a connected graph and link failures as edges being removed from the graph. Our approach, inspired by model checking methods, involves exhaustively checking the reachability of PMU nodes to PDC nodes, for all possible combinations of link failures, given an expected number of links fail simultaneously. Using the IEEE 14-bus system, we illustrate the construction of the graph model and the solution design. Finally, a comparative evaluation on how adding redundant links to the network improves the Power System Observability, is performed on the IEEE 118 bus-system. 
    more » « less
  5. It is well known that interdependence between electric power systems and other infrastructures can impact energy reliability and resilience, but it is less clear which particular interactions have the most impact. There is a need for methods that can rank the relative importance of these interdependencies. This paper describes a new tool for measuring resilience and ranking interactions. This tool, known as Computing Resilience of Infrastructure Simulation Platform (CRISP), samples from historical utility data to avoid many of the assumptions required for simulation-based approaches to resilience quantification. This paper applies CRISP to rank the relative importance of four types of interdependence (natural gas supply, communication systems, nuclear generation recovery, and a generic restoration delay) in two test cases: the IEEE 39-bus test case and a 6394-bus model of the New England/New York power grid. The results confirm industry studies suggesting that a loss of the natural gas system is the most severe specific interdependence faced by this region. 
    more » « less