skip to main content


Title: Community Roles for Supporting Emerging Education Researchers
DBER attracts many faculty from other STEM disciplines, and these faculty have little or no specific training in DBER. DBER requires a mastery of quantitative, qualitative, and/or mixed methodologies, and also a nuanced understanding of breadth of topic, research questions, and theoretical frameworks. This interdisciplinarity is particularly challenging for emerging DBER researchers who often switch into DBER with only discipline specific content and research training. As part of a large study about how STEM faculty become involved with DBER, we interviewed a number of emerging DBER faculty about their pathways into DBER. We conducted a thematic analysis of these interviews grounded in the theoretical frameworks of the reasoned action approach and conjecture mapping. Based on our analysis we identified 3 roles that support new faculty entering DBER. These roles are the peer, the subject matter expert, and the project manager.  more » « less
Award ID(s):
1726479 2025174
PAR ID:
10336267
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Bennett, Frank
Date Published:
Journal Name:
PERC Proceedings
Page Range / eLocation ID:
172 to 177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been a recent push for greater collaboration across the science, technology, engineering, and mathematics (STEM) fields in discipline-based education research (DBER). The DBER fields are unique in that they require a deep understanding of both disciplinary content and educational research. DBER scholars are generally trained and hold professional positions in discipline-specific departments. The professional societies with which DBER scholars are most closely aligned are also often discipline specific. This frequently results in DBER researchers working in silos. At the same time, there are many cross-cutting issues across DBER research in higher education, and DBER researchers across disciplines can benefit greatly from cross-disciplinary collaborations. This report describes the Breaking Down Silos working meeting, which was a short, focused meeting intentionally designed to foster such collaborations. The focus of Breaking Down Silos was institutional transformation in STEM education, but we describe the ways the overall meeting design and structure could be a useful model for fostering cross-­disciplinary collaborations around other research priorities of the DBER community. We describe our approach to meeting recruitment, premeeting work, and inclusive meeting design. We also highlight early outcomes from our perspective and the perspectives of the meeting participants. 
    more » « less
  2. In this paper, we explore faculty-leader perspectives on “standards,” established statements of expected ethical behavior at disciplinary levels (see page 5), through the analysis of interviews with faculty from the engineering-adjacent disciplines of computer science and biology as an important mechanism to understand the larger ecology of STEM ethics enculturation in which engineers often find themselves. To situate these interviews, we first discuss the existing landscape of literature around faculty roles in shaping the normative values. Then, we report on a set of faculty interviews that investigate the ethics frameworks (and their underlying values) at work in their departments and programs. Specifically, this paper reports a subset of data that is part of a larger NSF-funded research project (award #2024296) exploring the interplay among individual value foundations and disciplinary ethics frameworks in engineering and STEM education. We conclude by analyzing the conceptual and practical distinctions between responsibility and accountability as they relate to the standards identified by the disciplinary faculty we interviewed. 
    more » « less
  3. Purpose The purpose of this research study was to explore U.S. STEM faculty’s perceptions of culturally responsive mentoring underrepresented doctoral students in STEM programs. The research question that guided this study was “How do STEM doctoral faculty mentors engage in culturally responsive mentoring? Design/methodology/approach A case study research design was used and included findings from an embedded case drawn from a larger ongoing study. Six STEM faculty participants provided in-depth insights into the dynamic nature of the culturally responsive mentoring journey through semi-structured interviews that were analyzed using thematic analysis. The theoretical framework for this research study was grounded in the ideas posited by culturally responsive pedagogy. Findings The findings revealed three themes related to the mentoring journeys experienced by the faculty fellows: an academic journey, an intentional journey, and a subliminal journey. Research limitations/implications The findings of this research provide significant contribution to the current literature on mentoring and point to the importance of continuous, structured research efforts to increase the quality of mentoring for URM students in doctoral STEM programs. Practical implications STEM faculty could benefit from participating in mentor training framed by culturally responsive pedagogy. Future research is needed to explore the mentor training needs of STEM faculty in other environments, including contexts outside the United States. Originality/value This study extends understanding of STEM faculty's knowledge, dispositions, and abilities of culturally responsive mentoring and emphasizes the need for ongoing professional development training in this area. 
    more » « less
  4. ackground: Historically Black College and Universities (HBCUs) have for decades played a pivotal role in producing Black scientists. Research found that HBCUs, despite being under funded and resourced, were responsible for over 10% of Black scientists with doctorates. Even though most earn their doctorates at Historically White Institutions (HWIS), understanding the experience of Black STEM doctoral students at HBCUs is of paramount importance to impacting opportunity for success for underrepresented population groups. HBCUs are recognized for approaches to learning and learning environments that are more relational, encouraging peer to peer and student to faculty relationships, particularly in the form of same-race and same sex mentorships, resulting in less negative racialized gendered experiences and less competitive atmospheres. In spite of what appears to be accepted truths, such as HBCUs offering more culturally affirming experiences, some researchers suggests that little empirical research exists on the quality of support structures available for graduate students at HBCUS in STEM academic fields, particularly mentoring. Increased understanding would provide essential framing necessary for developing more effective mentors at HBCUs, especially given that there are limited numbers of Black faculty in STEM, even at HBCUs. Theoretical Framework: Anti-racism and critical capital theory are employed as theoretical frameworks. Both are well suited for questioning taken-for-granted assumptions about the lived experiences of racialized others and for deconstructing systemic issues influencing common faculty practices. These frameworks highlight the contextual experiences of STEM doctoral learning. Research Design: The researchers were interested in understanding how STEM doctoral faculty at HBCUs perceive their role as mentors. An NSF AGEP sponsored social science research project explored the dispositions, skills, and knowledge of eight STEM faculty at a HBCU. Attitudes towards culturally liberative mentoring were explored through a qualitative case study. The participating faculty were involved in an institutional change program and were interviewed for an average of 60 minutes. Constant comparative data analysis method was used. Additionally, STEM faculty from participating departments completed two mentoring competency and attitude inventories. This case was drawn from a larger multiple embedded case study. Research Findings: The research findings indicate that STEM doctoral faculty mentors at HBCUs express attitudes about mentoring that are not all that different from their PWIS counterparts. They have a tendency to hold deficit views of domestic Black students and have minimal awareness of how culture inhibits or facilitates a positive learning experience for Black students. Further the culture of science tended to blind them from the culture of people. Research Implications: In order to enhance the learning experiences of Black STEM doctoral students at HBCUs, the Black student experience at HBCUs must be deromanticized. Understanding the impact of anti-Black racism even within an environment historically and predominantly Black is imperative. Recognizing the ways in which anti-Black attitudes are insidiously present in faculty attitudes and practices and in environments perceived as friendly and supportive for Black students highlights opportunities for STEM faculty development that can move toward a more culturally liberative framework. 
    more » « less
  5. Four studies examine the faculty–student relationship as a mechanism through which students ascertain their place in science, technology, engineering, and mathematics (STEM) fields. Studies 1 and 2 use experimental methods to demonstrate STEM faculty who behave communally, relative to independently, increase undergraduates’ belonging and interest in STEM roles through anticipation of greater role-specific support (i.e., support that emphasizes guiding students through structures and activities of field-specific roles). Study 3 then examined the consequences of role-specific support for undergraduates’ belonging and interest in STEM. Students anticipated more belonging and interest in STEM roles when faculty provided high levels of role-specific support. Finally, STEM doctoral students’ perception of role-specific support from faculty related to their belonging and future identification in STEM fields (Study 4). Taken together, these studies demonstrate the importance of students’ construals of role-specific support from faculty, and how faculty behavior signals role-specific support, with benefits for student involvement in STEM. 
    more » « less