We consider the problem of covering multiple submodular constraints. Given a finite ground set
Approximation Algorithms for Socially Fair Clustering
We present an $e^{O(p)} (\log \ell) / (\log \log \ell)$-approximation algorithm for socially fair clustering with the $\ell_p$-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $\ell$ groups. The goal is to find a $k$-medians, $k$-means, or, more generally, $\ell_p$-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $k$ centers $C$ so as to minimize the maximum over all groups $j$ of $\sum_{u \text{ in group } j} d(u, C)^p$. The socially fair clustering problem was independently proposed by Abbasi, Bhaskara, and Venkatasubramanian (2021) and Ghadiri, Samadi, and Vempala (2021). Our algorithm improves and generalizes their $O(\ell)$-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $\Omega(\ell)$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $\Theta((\log \ell) / (\log \log \ell))$ for a fixed p. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. (2021).
- Editors:
- Belkin, Mikhail; Kpotufe, Samor
- Publication Date:
- NSF-PAR ID:
- 10336944
- Journal Name:
- Proceedings of the Conference on Learning Theory, PMLR
- Volume:
- 134
- Page Range or eLocation-ID:
- 3246-3264
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract N , a weight function ,$$w: N \rightarrow \mathbb {R}_+$$ r monotone submodular functions over$$f_1,f_2,\ldots ,f_r$$ N and requirements the goal is to find a minimum weight subset$$k_1,k_2,\ldots ,k_r$$ such that$$S \subseteq N$$ for$$f_i(S) \ge k_i$$ . We refer to this problem as$$1 \le i \le r$$ Multi-Submod-Cover and it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260 Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ Multi-Submod-Cover generalizes the well-known Submodular Set Cover problem (Submod-SC ), and it can also be easily reduced toSubmod-SC . A simple greedy algorithm gives an approximation where$$O(\log (kr))$$ and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for$$k = \sum _i k_i$$ Multi-Submod-Cover that covers each constraint to within a factor of while incurring an approximation of$$(1-1/e-\varepsilon )$$ in the cost. Second, we consider the special case when each$$O(\frac{1}{\epsilon }\log r)$$ is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover ($$f_i$$ Partial-SC ), covering integer programs (CIPs ) and multiple vertex cover constraintsmore » -
We study the problem of fair k-median where each cluster is required to have a fair representation of individuals from different groups. In the fair representation k-median problem, we are given a set of points X in a metric space. Each point x ∈ X belongs to one of ℓ groups. Further, we are given fair representation parameters αj and β_j for each group j ∈ [ℓ]. We say that a k-clustering C_1, ⋅⋅⋅, C_k fairly represents all groups if the number of points from group j in cluster C_i is between α_j |C_i| and β_j |C_i| for every j ∈ [ℓ] and i ∈ [k]. The goal is to find a set of k centers and an assignment such that the clustering defined by fairly represents all groups and minimizes the ℓ_1-objective ∑_{x ∈ X} d(x, ϕ(x)). We present an O(log k)-approximation algorithm that runs in time n^{O(ℓ)}. Note that the known algorithms for the problem either (i) violate the fairness constraints by an additive term or (ii) run in time that is exponential in both k and ℓ. We also consider an important special case of the problem where and for all j ∈ [ℓ]. For this special case,more »
-
Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoretical computer science: Given a directed graph G = (V, E) with edge costs c ∈ ℝ_{≥ 0}^E, a root r ∈ V and k terminals K ⊆ V, we need to output a minimum-cost arborescence in G that contains an rrightarrow t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial time O(log²k/log log k)-approximation algorithms for the problem, which are tight under popular complexity assumptions. In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are additionally given a degree bound d_v on each vertex v ∈ V, and we require that every vertex v in the output tree has at most d_v children. We give a quasi-polynomial time (O(log n log k), O(log² n))-bicriteria approximation: The algorithm produces a solution with cost at most O(log nlog k) times the cost of the optimum solution that violates the degree constraints by at most a factor of O(log²n). This is the first non-trivial result for the problem. While our cost-guarantee is nearly optimal, the degree violation factor of O(log²n) is an O(logmore »
-
Ahn, Hee-Kap ; Sadakane, Kunihiko (Ed.)In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements ourmore »
-
The densest subgraph problem in a graph (\dsg), in the simplest form, is the following. Given an undirected graph $G=(V,E)$ find a subset $S \subseteq V$ of vertices that maximizes the ratio $|E(S)|/|S|$ where $E(S)$ is the set of edges with both endpoints in $S$. \dsg and several of its variants are well-studied in theory and practice and have many applications in data mining and network analysis. In this paper we study fast algorithms and structural aspects of \dsg via the lens of \emph{supermodularity}. For this we consider the densest supermodular subset problem (\dssp): given a non-negative supermodular function $f: 2^V \rightarrow \mathbb{R}_+$, maximize $f(S)/|S|$. For \dsg we describe a simple flow-based algorithm that outputs a $(1-\eps)$-approximation in deterministic $\tilde{O}(m/\eps)$ time where $m$ is the number of edges. Our algorithm is the first to have a near-linear dependence on $m$ and $1/\eps$ and improves previous methods based on an LP relaxation. It generalizes to hypergraphs, and also yields a faster algorithm for directed \dsg. Greedy peeling algorithms have been very popular for \dsg and several variants due to their efficiency, empirical performance, and worst-case approximation guarantees. We describe a simple peeling algorithm for \dssp and analyze its approximation guarantee inmore »