skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universal Tensor Categories Generated by Dual Pairs
Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T .  more » « less
Award ID(s):
2001128
PAR ID:
10337060
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Categorical Structures
Volume:
29
Issue:
5
ISSN:
0927-2852
Page Range / eLocation ID:
915 to 950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A representation of\mathfrak{gl}(V)=V \otimes V^{\ast}is a linear map\mu \colon \mathfrak{gl}(V) \otimes M \rightarrow Msatisfying a certain identity. By currying, giving a linear map\muis equivalent to giving a linear mapa \colon V \otimes M \rightarrow V \otimes M, and one can translate the condition for\muto be a representation into a condition ona. This alternate formulation does not use the dual ofVand makes sense for any objectVin a tensor category\mathcal{C}. We call such objects representations of thecurried general linear algebraonV. The currying process can be carried out for many algebras built out of a vector space and its dual, and we examine several cases in detail. We show that many well-known combinatorial categories are equivalent to the curried forms of familiar Lie algebras in the tensor category of linear species; for example, the titular Brauer category is the curried form of the symplectic Lie algebra. This perspective puts these categories in a new light, has some technical applications, and suggests new directions to explore. 
    more » « less
  2. null (Ed.)
    Abstract For each integer $$t$$ a tensor category $$\mathcal{V}_t$$ is constructed, such that exact tensor functors $$\mathcal{V}_t\rightarrow \mathcal{C}$$ classify dualizable $$t$$-dimensional objects in $$\mathcal{C}$$ not annihilated by any Schur functor. This means that $$\mathcal{V}_t$$ is the “abelian envelope” of the Deligne category $$\mathcal{D}_t=\operatorname{Rep}(GL_t)$$. Any tensor functor $$\operatorname{Rep}(GL_t)\longrightarrow \mathcal{C}$$ is proved to factor either through $$\mathcal{V}_t$$ or through one of the classical categories $$\operatorname{Rep}(GL(m|n))$$ with $m-n=t$. The universal property of $$\mathcal{V}_t$$ implies that it is equivalent to the categories $$\operatorname{Rep}_{\mathcal{D}_{t_1}\otimes \mathcal{D}_{t_2}}(GL(X),\epsilon )$$, ($$t=t_1+t_2$$, $$t_1$$ not an integer) suggested by Deligne as candidates for the role of abelian envelope. 
    more » « less
  3. Let V V be a vertex operator superalgebra with the natural order 2 automorphism σ \sigma . Under suitable conditions on V V , the σ \sigma -fixed subspace V 0 ¯ V_{\bar 0} is a vertex operator algebra and the V 0 ¯ V_{\bar 0} -module category C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is a modular tensor category. In this paper, we prove that C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is a fermionic modular tensor category and the Müger centralizer C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 of the fermion in C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is generated by the irreducible V 0 ¯ V_{\bar 0} -submodules of the V V -modules. In particular, C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 is a super-modular tensor category and C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is a minimal modular extension of C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 . We provide a construction of a vertex operator superalgebra V l V^l for each positive integer l l such that C ( V l ) 0 ¯ \mathcal {C}_{{(V^l)_{\bar 0}}} is a minimal modular extension of C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 . We prove that these modular tensor categories C ( V l ) 0 ¯ \mathcal {C}_{{(V^l)_{\bar 0}}} are uniquely determined, up to equivalence, by the congruence class of l l modulo 16. 
    more » « less
  4. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less
  5. Leveraging skew Howe duality, we show that Lawson–Lipshitz–Sarkar’s spectrification of Khovanov’s arc algebra gives rise to 2-representations of categorified quantum groups over F 2 \mathbb {F}_2 that we call spectral 2-representations. These spectral 2-representations take values in the homotopy category of spectral bimodules over spectral categories. We view this as a step toward a higher representation theoretic interpretation of spectral enhancements in link homology. A technical innovation in our work is a streamlined approach to spectrifying arc algebras, using a set of canonical cobordisms that we call frames, that may be of independent interest. As a step toward extending these spectral 2-representations to integer coefficients, we also work in the g l 2 \mathfrak {gl}_2 setting and lift the Blanchet–Khovanov algebra to a multifunctor into a multicategory version of Sarkar–Scaduto–Stoffregen’s signed Burnside category. 
    more » « less