skip to main content

Title: ARMADA. II. Further Detections of Inner Companions to Intermediate-mass Binaries with Microarcsecond Astrometry at CHARA and VLTI
Abstract We started a survey with CHARA/MIRC-X and VLTI/GRAVITY to search for low-mass companions orbiting individual components of intermediate-mass binary systems. With the incredible precision of these instruments, we can detect astrometric “wobbles” from companions down to a few tens of microarcseconds. This allows us to detect any previously unseen triple systems in our list of binaries. We present the orbits of 12 companions around early F- to B-type binaries, 9 of which are new detections and 3 of which are first astrometric detections of known radial velocity (RV) companions. The masses of these newly detected components range from 0.45 to 1.3 M ⊙ . Our orbits constrain these systems to a high astrometric precision, with median residuals to the orbital fit of 20–50 μ as in most cases. For seven of these systems we include newly obtained RV data, which help us to identify the system configuration and to solve for masses of individual components in some cases. Although additional RV measurements are needed to break degeneracy in the mutual inclination, we find that the majority of these inner triples are not well aligned with the wide binary orbit. This hints that higher-mass triples are more misaligned compared to solar and lower-mass triples, though a thorough study of survey biases is needed. We show that the ARMADA survey is extremely successful at uncovering previously unseen companions in binaries. This method will be used in upcoming papers to constrain companion demographics in intermediate-mass binary systems down to the planetary-mass regime.  more » « less
Award ID(s):
2034336 2009489
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
The Astronomical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.

    more » « less
  2. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. 
    more » « less

    We present a high-contrast imaging survey of intermediate-mass (1.75–4.5 M⊙) stars to search the most extreme stellar binaries, i.e. for the lowest mass stellar companions. Using adaptive optics at the Lick and Gemini observatories, we observed 169 stars and detected 24 candidates companions, 16 of which are newly discovered, and all but three are likely or confirmed physical companions. Despite obtaining sensitivity down to the substellar limit for 75 per cent of our sample, we do not detect any companion below 0.3 M⊙, strongly suggesting that the distribution of stellar companions is truncated at a mass ratio of qmin ≳ 0.075. Combining our results with known brown dwarf companions, we identify a low-mass companion desert to intermediate-mass stars in the range 0.02 ≲ q ≲ 0.05, which quantitatively matches the known brown dwarf desert among solar-type stars. We conclude that the formation mechanism for multiple systems operates in a largely scale-invariant manner and precludes the formation of extremely uneven systems, likely because the components of a protobinary accrete most of their mass after the initial cloud fragmentation. Similarly, the mechanism to form ‘planetary’ (q ≲ 0.02) companions likely scales linearly with stellar mass, probably as a result of the correlation between the masses of stars and their protoplanetary discs. Finally, we predict the existence of a sizable population of brown dwarf companions to low-mass stars and of a rising population of planetary-mass objects towards ${\approx}1\,M_\mathrm{Jup}$ around solar-type stars. Improvements on current instrumentation will test these predictions.

    more » « less
  4. Abstract

    Castor is a system of six stars in which the two brighter objects, Castor A and B, revolve around each other every ∼450 yr and are both short-period spectroscopic binaries. They are attended by the more distant Castor C, which is also a binary. Here we report interferometric observations with the Center for High Angular Resolution Astronomy (CHARA) array that spatially resolve the companions in Castor A and B for the first time. We complement these observations with new radial velocity measurements of A and B spanning 30 yr, with the Hipparcos intermediate data, and with existing astrometric observations of the visual AB pair obtained over the past three centuries. We perform a joint orbital solution to solve simultaneously for the three-dimensional orbits of Castor A and B as well as the AB orbit. We find that they are far from being coplanar: the orbit of A is nearly at right angles (92°) relative to the wide orbit, and that of B is inclined about 59° compared to AB. We determine the dynamical masses of the four stars in Castor A and B to a precision better than 1%. We also determine the radii of the primary stars of both subsystems from their angular diameters measured with the CHARA array, and use them together with stellar evolution models to infer an age for the system of 290 Myr. The new knowledge of the orbits enables us to measure the slow motion of Castor C as well, which may assist future studies of the dynamical evolution of this remarkable sextuple system.

    more » « less
  5. Context. Hot subdwarfs in close binaries with either M dwarf, brown dwarf, or white dwarf companions show unique light variations. In hot subdwarf binaries with M dwarf or brown dwarf companions, we can observe the so-called reflection effect, while in hot subdwarfs with close white dwarf companions, we find ellipsoidal modulation and/or Doppler beaming. Aims. Analyses of these light variations can be used to derive the mass and radius of the companion and determine its nature. Thereby, we can assume the most probable sdB mass and the radius of the sdB derived by the fit of the spectral energy distribution and the Gaia parallax. Methods. In the high signal-to-noise space-based light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission, several reflection effect binaries and ellipsoidal modulation binaries have been observed with much better quality than with ground-based observations. The high quality of the light curves allowed us to analyze a large sample of sdB binaries with M dwarf or white dwarf companions using LCURVE . Results. For the first time, we can constrain the absolute parameters of 19 companions of reflection effect systems, covering periods from 2.5 to 19 h and with companion masses from the hydrogen-burning limit to early M dwarfs. Moreover, we were able to determine the mass of eight white dwarf companion to hot subdwarf binaries showing ellipsoidal modulations, covering the as-yet unexplored period range of 7 to 19 h. The derived masses of the white dwarf companions show that all but two of the white dwarf companions are most likely helium-core white dwarfs. Combining our results with previously measured rotation velocities allowed us to derive the rotation period of seven sdBs in short-period binaries. In four of those systems, the rotation period of the sdB agrees with a tidally locked orbit, whereas in the other three systems, the sdB rotates significantly more slowly. 
    more » « less