skip to main content


Title: Learning Solutions for Intertemporal Power Systems Optimization with Recurrent Neural Networks
Learning mappings between system loading and optimal dispatch solutions has been a recent topic of interest in the power systems and machine learning communities. However, previous works have ignored practical power system constraints such as generator ramp limits and other intertemporal requirements. Additionally, optimal power flow runs are not performed independently of previous timesteps - in most cases, an OPF solution representing the current state of the system is heavily related to the OPF solution from previous timesteps. In this paper, we train a recurrent neural network, which embeds natural relationships between timesteps, to predict the optimal solution of convex power systems optimization problems with intertemporal constraints. In contrast to traditional forecasting methods, the computational benefits from this technique can allow operators to rapidly simulate forecasts of system operation and corresponding optimal solutions to provide a more comprehensive view of future system states.  more » « less
Award ID(s):
2007164 2143706
PAR ID:
10337615
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective. 
    more » « less
  2. Optimal Power Flow (OPF) is a challenging problem in power systems, and recent research has explored the use of Deep Neural Networks (DNNs) to approximate OPF solutions with reduced computational times. While these approaches show promising accuracy and efficiency, there is a lack of analysis of their robustness. This paper addresses this gap by investigating the factors that lead to both successful and suboptimal predictions in DNN-based OPF solvers. It identifies power system features and DNN characteristics that contribute to higher prediction errors and offers insights on mitigating these challenges when designing deep learning models for OPF. 
    more » « less
  3. o shift the computational burden from real-time to offline in delay-critical power systems applications, recent works entertain the idea of using a deep neural network (DNN) to predict the solutions of the AC optimal power flow (AC-OPF) once presented load demands. As network topologies may change, training this DNN in a sample-efficient manner becomes a necessity. To improve data efficiency, this work utilizes the fact OPF data are not simple training labels, but constitute the solutions of a parametric optimization problem. We thus advocate training a sensitivity-informed DNN (SI-DNN) to match not only the OPF optimizers, but also their partial derivatives with respect to the OPF parameters (loads). It is shown that the required Jacobian matrices do exist under mild conditions, and can be readily computed from the related primal/dual solutions. The proposed SI-DNN is compatible with a broad range of OPF solvers, including a non-convex quadratically constrained quadratic program (QCQP), its semidefinite program (SDP) relaxation, and MATPOWER; while SI-DNN can be seamlessly integrated in other learning-to-OPF schemes. Numerical tests on three benchmark power systems corroborate the advanced generalization and constraint satisfaction capabilities for the OPF solutions predicted by an SI-DNN over a conventionally trained DNN, especially in low-data setups. 
    more » « less
  4. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less
  5. The optimal power flow (OPF) problem plays an important role in power system operation and control. The problem is nonconvex and NP-hard, hence global optimality is not guaranteed and the complexity grows exponentially with the size of the system. Therefore, centralized optimization techniques are not suitable for large-scale systems and an efficient decomposed implementation of OPF is highly demanded. In this paper, we propose a novel and efficient method to decompose the entire system into multiple sub-systems based on automatic regionalization and acquire the OPF solution across sub-systems via a modified MATPOWER solver. The proposed method is implemented in a modified solver and tested on several IEEE Power System Test Cases. The performance is shown to be more appealing compared with the original solver. 
    more » « less