skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interacting fractons in 2+1-dimensional quantum field theory
A bstract We analyze, in perturbation theory, a theory of weakly interacting fractons and non-relativistic fermions in a 2+1 dimensional Quantum Field Theory. In particular we compute the 1-loop corrections to the self energies and interaction vertex, and calculate the associated 1-loop Renormalization Group flows of the coupling constants. Surprisingly, we find that the fracton-fermion coupling does not flow due to an emergent coordinate-dependent symmetry of the effective Lagrangian, making this model a well-defined quantum field theory. We provide additional discussions on the regularization and renormalization of interacting fractonic theories, as well as both qualitative and quantitative remarks regarding the theory at finite temperature and finite chemical potential.  more » « less
Award ID(s):
1914679
PAR ID:
10337803
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We consider two nonlinear sigma models on de Sitter background which involve the same derivative interactions as quantum gravity but without the gauge issue. The first model contains only a single field, which can be reduced to a free theory by a local field redefinition; the second contains two fields and cannot be so reduced. Loop corrections in both models produce large temporal and spatial logarithms which cause perturbation theory to break down at late times and large distances. Many of these logarithms derive from the “tail” part of the propagator and can be summed using a variant of Starobinsky’s stochastic formalism involving a curvature-dependent effective potential. The remaining logarithms derive from the ultraviolet and can be summed using a variant of the renormalization group based on a special class of curvature-dependent renormalizations. Explicit results are derived at 1-loop and 2-loop orders. 
    more » « less
  2. A<sc>bstract</sc> The kinetic mixing of two U(1) gauge theories can result in a massless photon that has perturbative couplings to both electric and magnetic charges. This framework can be used to perturbatively calculate in a quantum field theory with both kinds of charge. Here we reexamine the running of the magnetic charge, where the calculations of Schwinger and Coleman sharply disagree. We calculate the running of both electric and magnetic couplings and show that the disagreement between Schwinger and Coleman is due to an incomplete summation of topological terms in the perturbation series. We present a momentum space prescription for calculating the loop corrections in which the topological terms can be systematically separated for resummation. Somewhat in the spirit of modern amplitude methods we avoid using a vector potential and use the field strength itself, thereby trading gauge redundancy for the geometric redundancy of Stokes surfaces. The resulting running of the couplings demonstrates that Dirac charge quantization is independent of renormalization scale, as Coleman predicted. As a simple application we also bound the parameter space of magnetically charged states through the experimental measurement of the running of electromagnetic coupling. 
    more » « less
  3. A bstract We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge redundancies. As an invaluable tool we introduce a modified helicity $$ \tilde{h} $$ h ˜ under which gravitons carry one unit instead of two. With this modified helicity we easily explain old and uncover new non-renormalization theorems for theories including gravitons. We provide complete results for the one-loop gravitational renormalization of a generic minimally coupled gauge theory with scalars and fermions and all orders in M Pl , as well as for the renormalization of dimension-six operators including at least one graviton, all up to four external particles. 
    more » « less
  4. We propose a description of the gluon scattering amplitudes as the inverse Mellin transforms of the conformal correlators of light operators in two-dimensional Liouville theory tensored with WZW-like chiral currents on the celestial sphere. The dimensions of operators are Mellin dual to gluon light cone energies while their positions are determined by the gluon momentum directions. Tree-level approximation in Yang-Mills theory corresponds to the semiclassical limit of Liouville theory. By comparing subleading corrections, we find b^2=(8π^2)^{−1}b_0g^2(M), where b is the Liouville coupling constant, g(M) is the Yang Mills coupling at the renormalization scale M and b_0 is the one-loop coefficient of the Yang-Mills beta function. 
    more » « less
  5. We discuss some higher-loop studies of renormalization-group flows and fixed points in various quantum field theories 
    more » « less