skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Centre of mass location, flight modes, stability and dynamic modelling of gliders
Falling paper flutters and tumbles through air, whereas a paper airplane glides smoothly if its leading edge is appropriately weighted. We investigate this transformation from ‘plain paper’ to ‘paper plane’ through experiments, aerodynamic modelling and free flight simulations of thin plates with differing centre of mass (CoM) locations. Periodic modes such as fluttering, tumbling and bounding give way to steady gliding and then downward diving as the CoM is increasingly displaced towards one edge. To explain these observations, we formulate a quasi-steady aerodynamic model whose force and torque coefficients are informed by experimental measurements. The dependencies on angle of attack reflect the transition from attached to separated flow and a dynamic centre of pressure, effects that prove critical to reproducing the observed motions of paper planes in air and plates in water. Because the model successfully accounts for unsteady and steady flight modes, it may be usefully applied to further problems involving actuated motions, feedback control and interactions with ambient flows.  more » « less
Award ID(s):
1646339
PAR ID:
10338798
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
937
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The passive flight of a thin wing or plate is an archetypal problem in flow–structure interactions at intermediate Reynolds numbers. This seemingly simple aerodynamic system displays an impressive variety of steady and unsteady motions that are familiar from fluttering leaves, tumbling seeds and gliding paper planes. Here, we explore the space of flight behaviours using a nonlinear dynamical model rooted in a quasisteady description of the fluid forces. Efficient characterisation is achieved by identification of the key dimensionless parameters, assessment of the steady equilibrium states and linear analysis of their stability. The structure and organisation of the stable and unstable flight equilibria proves to be complex, and seemingly related factors such as mass and buoyancy-corrected weight play distinct roles in determining the eventual flight patterns. The nonlinear model successfully reproduces previously documented unsteady states such as fluttering and tumbling while also predicting new types of motions, and the linear analysis accurately accounts for the stability of steady states such as gliding and diving. While the conditions for dynamic stability seem to lack tidy formulae that apply universally, we identify relations that hold in certain regimes and which offer mechanistic interpretations. The generality of the model and the richness of its solution space suggest implications for small-scale aerodynamics and related applications in biological and robotic flight. 
    more » « less
  2. Various tools have been developed to model the aerodynamics of flapping wings. In particular, quasi-steady models, which are considerably faster and easier to solve than the Navier–Stokes equations, are often utilized in the study of flight dynamics of flapping wing flyers. However, the accuracy of the quasi-steady models has not been properly documented. The objective of this study is to assess the accuracy of a quasi-steady model by comparing the resulting aerodynamic forces against three-dimensional (3D) Navier–Stokes solutions. The same wing motion is prescribed at a fruit fly scale. The pitching amplitude, axis, and duration are varied. Comparison of the aerodynamic force coefficients suggests that the quasi-steady model shows significant discrepancies under extreme pitching motions, i.e., the pitching motion is large, quick, and occurs about the leading or trailing edge. The differences are as large as 1.7 in the cycle-averaged lift coefficient. The quasi-steady model performs well when the kinematics are mild, i.e., the pitching motion is small, long, and occurs near the mid-chord with a small difference in the lift coefficient of 0.01. Our analysis suggests that the main source for the error is the inaccuracy of the rotational lift term and the inability to model the wing-wake interaction in the quasi-steady model. 
    more » « less
  3. Flying snakes (genus Chrysopelea) glide without the use of wings. Instead, they splay their ribs and undulate through the air. A snake's ability to glide depends on how well its morphing wing-body produces lift and drag forces. However, previous kinematics experiments under-resolved the body, making it impossible to estimate the aerodynamic load on the animal or to quantify the different wing configurations throughout the glide. Here, we present new kinematic analyses of a previous glide experiment, and use the results to test a theoretical model of flying snake aerodynamics using previously measured lift and drag coefficients to estimate the aerodynamic forces. This analysis is enabled by new measurements of the center of mass motion based on experimental data. We found that quasi-steady aerodynamic theory under-predicts lift by 35% and over-predicts drag by 40%. We also quantified the relative spacing of the body as the snake translates through the air. In steep glides, the body is generally not positioned to experience tandem effects from wake interaction during the glide. These results suggest that unsteady 3D effects, with appreciable force enhancement, are important for snake flight. Future work can use the kinematics data presented herein to form test conditions for physical modeling, as well as computational studies to understand unsteady fluid dynamics effects on snake flight. 
    more » « less
  4. Abstract As insects fly, their wings generate complex wake structures that play a crucial role in their aerodynamic force production. This study focuses on utilizing reduced order modeling techniques to gain valuable insights into the fluid dynamic principles underlying insect flight. Specifically, we used an immersed-boundary-method-based computational fluid dynamics (CFD) solver to simulate a hovering hawkmoth’s wake, and then identified the most energetic modes of the wake using proper orthogonal decomposition (POD). Furthermore, we employed a sparse identification of nonlinear dynamics (SINDy) approach to find a simple reduced order model that relates the most energetic POD modes. Through this process, we formulated multiple different models incorporating varying numbers of POD modes. To compare the accuracy of these models, we utilized a force survey method to estimate the aerodynamic forces produced by the hawkmoth’s wings. This force survey method uses an impulse-based approach to calculate the aerodynamic lift and drag based solely on the velocity and vorticity information provided by the model. By comparing the estimated aerodynamic force with the actual force production calculated by the CFD solver, we were able to find the simplest model that still provides an accurate representation of the complex wake produced by the hovering hawkmoth wings. We also evaluated the stability and accuracy of this model as the number of flapping cycles increases with time. The reduced order modeling of insect flight has important implications for the design and control of bio-inspired micro-aerial vehicles. In addition, it holds the potential to reduce the computational cost associated with high-fidelity CFD simulations of complex flows. 
    more » « less
  5. Floating offshore wind turbines (FOWTs) experience multiple degree-of-freedom (DOF) motion as a result of the non-linear interactions between the aerodynamic and hydrodynamic forces exerted on the turbine rotor and the floating platform, respectively, which create complex dynamics for FOWT operations and, in turn, variability in rotor angular speed and power capture. In this work, wind tunnel experiments are performed with a down-scaled FOWT model installed on top of a robotic emulator that reproduces 4-DOF motions. Rotor rotational speed, ω, and power capture are measured for pitch motions with different amplitudes and frequencies. These experimental data are first analyzed, then used for the validation of a non-linear dynamic analytical model that predicts the variation in ω and power capture by leveraging the aerodynamic quasi-steady assumption, namely, the FOWT power curve measured under static conditions and null pitch angle is used to predict operations under dynamic conditions. The results show that good accuracy is generally achieved with the analytical model. However, dynamic aerodynamic effects occur during pitch motion that can jeopardize the accuracy of the analytical model, especially with increasing ω, motion amplitude, and in correspondence with pitch angles where the inversion of the motion direction occurs. Furthermore, it is found that these dynamic aerodynamic effects can be accurately predicted through a random forest model by providing as input pitch angle, velocity, and acceleration of the incoming wind. Among the different FOWT motion parameters, the pitch angle is found to be the most influential factor for the magnitude of the dynamic aerodynamic effects. 
    more » « less