Polymer-derived ceramics (PDCs) which are fabricated through pyrolysis of preceramic polymers have attracted increasing attention due to their versatility in structure architecture design and property tailoring. Shaping at the polymer state using 3D printing allows the final ceramic products to exhibit arbitrary shapes and complex architectures that are otherwise impossible to achieve through traditional processing routes. The polymer-to-ceramic phase transition also provides additional space for mechanical property tailoring. A multiscale computational model is developed to explore the phase transition mechanisms and their correlations with processing parameters and failure response. Calculations in this work concern PMHS/DVB preceramic polymers. Molecular dynamics (MD) simulations are carried out first to track the atomic structure evolution at different temperatures. Continuum-scale ceramic phase formation is calculated on the basis of the competition between gas generation and gas diffusion. The effect of processing parameters on mechanical properties of pyrolyzed PMHS/DVB is systematically studied. Conclusions from this study can provide direct guidance for fabricating PDC composites with tailored mechanical properties.
more »
« less
Energy Dissipation Pathway Control in Polymer Derived Ceramic (PDC) Composites
Ceramics are brittle due in large part to the limited availability of energy dissipation pathways when they are subjected to an impact load. The primary avenue for improving the material reliability and energy-absorption capability is to create new energy dissipation mechanisms that can be used to replace or minimize the kinetic energy associated with the debris shattering. In this paper, a computational framework is developed to investigate the relationship between phase composition and energy dissipation pathways in polymer derived ceramic (PDC) composites by accounting for the key processing parameters and deformation/failure mechanisms. It is found that the phase composition that promotes both the Mullins effect and the ligament bridging mechanism can significantly improve the structural integrity of the composite material. A fundamental understanding of how to redistribute the impact energy dissipation in a controllable path would hold great promise for fabricating PDC composites with tailored properties.
more »
« less
- Award ID(s):
- 1757371
- PAR ID:
- 10338887
- Date Published:
- Journal Name:
- Journal of Dynamic Behavior of Materials
- ISSN:
- 2199-7446
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates important insights applicable to nanomaterials, particle-reinforced composites, and biocompatible polymers.more » « less
-
Reducing energy dissipation is a central goal of classical and quantum technologies. Optics achieved great success in bringing down power consumption of long-distance communication links. With the rise of mobile, quantum, and cloud technologies, it is essential to extend this success to shorter links. Electro-optic modulators are a crucial contributor of dissipation in such links. Numerous variations on important mechanisms such as free-carrier modulation and the Pockels effect are currently pursued, but there are few investigations of mechanical motion as an electro-optic mechanism in silicon. In this work, we demonstrate electrical driving and optical read-out of a 7.2 GHz mechanical mode of a silicon photonic waveguide. The electrical driving is capacitive and can be implemented in any material system. The measurements show that the mechanically mediated optical phase modulation is two orders of magnitude more efficient than the background phase modulation in our system. Our demonstration is an important step toward efficient opto-electro-mechanical devices in a scalable photonic platform.more » « less
-
The distribution of marine zooplankton depends on both ocean currents and swimming behavior. Many zooplankton perform diel vertical migration (DVM) between the surface and subsurface, which can have different current regimes. If concentration mechanisms, such as fronts or eddies, are present in the subsurface, they may impact zooplankton near-surface distributions when they migrate to near-surface waters. A subsurface, retentive eddy within Palmer Deep Canyon (PDC), a submarine canyon along the West Antarctic Peninsula (WAP), retains diurnal vertically migrating zooplankton in previous model simulations. Here, we tested the hypothesis that the presence of the PDC and its associated subsurface eddy increases the availability and delivery of simulated Antarctic krill to nearby penguin foraging regions with model simulations over a single austral summer. We found that the availability and delivery rates of simulated krill to penguin foraging areas adjacent to PDC were greater when the PDC was present compared to when PDC was absent, and when DVM was deepest. These results suggest that the eddy has potential to enhance krill availability to upper trophic level predators and suggests that retention may play a significant role in resource availability for predators in other similar systems along the WAP and in other systems with sustained subsurface eddies.more » « less
-
Antimony (Sb) electrodes are an ideal anode material for sodium-ion batteries, which are an attractive energy storage system to support grid-level energy storage. These anodes have high thermal stability, good rate performance, and good electronic conductivity, but there are limitations on the fundamental understanding of phases present as the material is sodiated and desodiated. Therefore, detailed investigations of the impact of the structure-property relationships on the performance of Sb electrodes are crucial for understanding how the degradation mechanisms of these electrodes can be controlled. Although significant work has gone into understanding the sodiation/desodiation mechanism of Sb-based anodes, the fabrication method, electrode composition and experimental parameters vary tremendously and there are discrepancies in the reported sodiation/desodiation reactions. Here we report the use of electrodeposition and slurry casting to fabricate Sb composite films to investigate how different fabrication techniques influence observed sodiation/desodiation reactions. We report that electrode fabrication techniques can dramatically impact the sodiation/desodiation reaction mechanism due to mechanical stability, morphology, and composition of the film. Electrodeposition has been shown to be a viable fabrication technique to process anode materials and to study reaction mechanisms at longer lengths scales without the convolution of binders and additives.more » « less
An official website of the United States government

