skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A stabilizer framework for Contextual Subspace VQE and the noncontextual projection ansatz
Quantum chemistry is a promising application for noisy intermediate-scale quantum (NISQ) devices. However, quantum computers have thus far not succeeded in providing solutions to problems of real scientific significance, with algorithmic advances being necessary to fully utilise even the modest NISQ machines available today. We discuss a method of ground state energy estimation predicated on a partitioning the molecular Hamiltonian into two parts: one that is noncontextual and can be solved classically, supplemented by a contextual component that yields quantum corrections obtained via a Variational Quantum Eigensolver (VQE) routine. This approach has been termed Contextual Subspace VQE (CS-VQE), but there are obstacles to overcome before it can be deployed on NISQ devices. The problem we address here is that of the ansatz - a parametrized quantum state over which we optimize during VQE. It is not initially clear how a splitting of the Hamiltonian should be reflected in our CS-VQE ansätze. We propose a 'noncontextual projection' approach that is illuminated by a reformulation of CS-VQE in the stabilizer formalism. This defines an ansatz restriction from the full electronic structure problem to the contextual subspace and facilitates an implementation of CS-VQE that may be deployed on NISQ devices. We validate the noncontextual projection ansatz using a quantum simulator, with results obtained herein for a suite of trial molecules.  more » « less
Award ID(s):
1818914
PAR ID:
10339352
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We describe the contextual subspace variational quantum eigensolver (CS-VQE), a hybrid quantum-classical algorithm for approximating the ground state energy of a Hamiltonian. The approximation to the ground state energy is obtained as the sum of two contributions. The first contribution comes from a noncontextual approximation to the Hamiltonian, and is computed classically. The second contribution is obtained by using the variational quantum eigensolver (VQE) technique to compute a contextual correction on a quantum processor. In general the VQE computation of the contextual correction uses fewer qubits and measurements than the VQE computation of the original problem. Varying the number of qubits used for the contextual correction adjusts the quality of the approximation. We simulate CS-VQE on tapered Hamiltonians for small molecules, and find that the number of qubits required to reach chemical accuracy can be reduced by more than a factor of two. The number of terms required to compute the contextual correction can be reduced by more than a factor of ten, without the use of other measurement reduction schemes. This indicates that CS-VQE is a promising approach for eigenvalue computations on noisy intermediate-scale quantum devices. 
    more » « less
  2. Classical computing plays a critical role in the advancement of quantum frontiers in the NISQ era. In this spirit, this work uses classical simulation to bootstrap Variational Quantum Algorithms (VQAs). VQAs rely upon the iterative optimization of a parameterized unitary circuit (ansatz) with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to classically choose the VQA ansatz initial parameters to be as close to optimal as possible to improve VQA accuracy and accelerate their convergence on today’s devices. This work tackles the problem of finding a good ansatz initialization, by proposing CAFQA, a Clifford Ansatz For Quantum Accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation. The resulting initial states always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and enable high-accuracy VQA estimations. CAFQA is well-suited to classical computation because: a) Clifford-only quantum circuits can be exactly simulated classically in polynomial time, and b) the discrete Clifford space is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation (up to 18 qubits), CAFQA’s Clifford Ansatz achieves a mean accuracy of nearly 99% and recovers as much as 99.99% of the molecular correlation energy that is lost in Hartree-Fock initialization. CAFQA achieves mean accuracy improvements of 6.4x and 56.8x, over the state-of-the-art, on different metrics. The scalability of the approach allows for preliminary ground state energy estimation of the challenging chromium dimer (Cr2) molecule. With CAFQA’s high-accuracy initialization, the convergence of VQAs is shown to accelerate by 2.5x, even for small molecules. Furthermore, preliminary exploration of allowing a limited number of non-Clifford (T) gates in the CAFQA framework, shows that as much as 99.9% of the correlation energy can be recovered at bond lengths for which Clifford-only CAFQA accuracy is relatively limited, while remaining classically simulable. 
    more » « less
  3. Abstract Hybrid quantum-classical approaches offer potential solutions to quantum chemistry problems, yet they often manifest as constrained optimization problems. Here, we explore the interconnection between constrained optimization and generalized eigenvalue problems through the Unitary Coupled Cluster (UCC) excitation generators. Inspired by the generator coordinate method, we employ these UCC excitation generators to construct non-orthogonal, overcomplete many-body bases, projecting the system Hamiltonian into an effective Hamiltonian, which bypasses issues such as barren plateaus that heuristic numerical minimizers often encountered in standard variational quantum eigensolver (VQE). Diverging from conventional quantum subspace expansion methods, we introduce an adaptive scheme that robustly constructs the many-body basis sets from a pool of the UCC excitation generators. This scheme supports the development of a hierarchical ADAPT quantum-classical strategy, enabling a balanced interplay between subspace expansion and ansatz optimization to address complex, strongly correlated quantum chemical systems cost-effectively, setting the stage for more advanced quantum simulations in chemistry. 
    more » « less
  4. We explore how to build quantum circuits that compute the lowest energy state corresponding to a given Hamiltonian within a symmetry subspace by explicitly encoding it into the circuit. We create an explicit unitary and a variationally trained unitary that maps any vector output by ansatz A(α→) from a defined subspace to a vector in the symmetry space. The parameters are trained varitionally to minimize the energy, thus keeping the output within the labelled symmetry value. The method was tested for a spin XXZ Hamiltonian using rotation and reflection symmetry and H2 Hamiltonian within Sz=0 subspace using S2 symmetry. We have found the variationally trained unitary gives good results with very low depth circuits and can thus be used to prepare symmetry states within near term quantum computers. 
    more » « less
  5. Variational Quantum Algorithms (VQAs) rely upon the iterative optimization of a parameterized unitary circuit with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to choose a VQA's ansatz appropriately and its initial parameters to be close to optimal. This work tackles the problem of finding initial ansatz parameters by proposing CAFQA, a Clifford ansatz for quantum accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the initial parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation, thereby producing a suitable stabilizer state. The stabilizer states produced are shown to always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and often produce high accuracy estimations prior to quantum exploration. Furthermore, the technique is classically suited since a) Clifford circuits can be exactly simulated classically in polynomial time and b) the discrete Clifford space, while scaling exponentially in the number of qubits, is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation up to 20 qubits, CAFQA's Clifford Ansatz achieves a mean accuracy of near 99%, recovering as much as 99.99% of the correlation energy over Hartree-Fock. Notably, the scalability of the approach allows for preliminary ground state energy estimation of the challenging Chromium dimer with an accuracy greater than Hartree-Fock. With CAFQA's initialization, VQA convergence is accelerated by a factor of 2.5x. In all, this work shows that stabilizer states are an accurate ansatz initialization for VQAs. Furthermore, it highlights the potential for quantum-inspired classical techniques to support VQAs. 
    more » « less