skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geo-FARM: Geodesic Factor Regression Model for Misaligned Pre-shape Responses in Statistical Shape Analysis
The problem of using covariates to predict shapes of objects in a regression setting is important in many fields. A formal statistical approach, termed Geodesic regression model, is commonly used for modeling and analyzing relationships between Euclidean predictors and shape responses. Despite its popularity, this model faces several key challenges, including (i) misalignment of shapes due to pre-processing steps, (ii) difficulties in shape alignment due to imaging heterogeneity, and (iii) lack of spatial correlation in shape structures. This paper proposes a comprehensive geodesic factor regression model that addresses all these challenges. Instead of using shapes as extracted from pre-registered data, it takes a more fundamental approach, incorporating alignment step within the proposed regression model and learns them using both pre-shape and covariate data. Additionally, it specifies spatial correlation structures using low-dimensional representations, including latent factors on the tangent space and isotropic error terms. The proposed framework results in substantial improvements in regression performance, as demonstrated through simulation studies and a real data analysis on Corpus Callosum contour data obtained from the ADNI study.  more » « less
Award ID(s):
1953087
PAR ID:
10339550
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Page Range / eLocation ID:
11491 to 11500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many industries, such as human-centric product manufacturing, are calling for mass customization with personalized products. One key enabler of mass customization is 3D printing, which makes flexible design and manufacturing possible. However, the personalized designs bring challenges for the shape matching and analysis, owing to the high complexity and shape variations. Traditional shape matching methods are limited to spatial alignment and finding a transformation matrix for two shapes, which cannot determine a vertex-to-vertex or feature-to-feature correlation between the two shapes. Hence, such a method cannot measure the deformation of the shape and interested features directly. To measure the deformations widely seen in the mass customization paradigm and address the issues of alignment methods in shape matching, we identify the geometry matching of deformed shapes as a correspondence problem. The problem is challenging due to the huge solution space and nonlinear complexity, which is difficult for conventional optimization methods to solve. According to the observation that the well-established massive databases provide the correspondence results of the treated teeth models, a learning-based method is proposed for the shape correspondence problem. Specifically, a state-of-the-art geometric deep learning method is used to learn the correspondence of a set of collected deformed shapes. Through learning the deformations of the models, the underlying variations of the shapes are extracted and used for finding the vertex-to-vertex mapping among these shapes. We demonstrate the application of the proposed approach in the orthodontics industry, and the experimental results show that the proposed method can predict correspondence fast and accurate, also robust to extreme cases. Furthermore, the proposed method is favorably suitable for deformed shape analysis in mass customization enabled by 3D printing. 
    more » « less
  2. Functional data contains two components: shape (or amplitude) and phase. This paper focuses on a branch of functional data analysis (FDA), namely Shape-Based FDA, that isolates and focuses on shapes of functions. Specifically, this paper focuses on Scalar-on-Shape (ScoSh) regression models that incorporate the shapes of predictor functions and discard their phases. This aspect sets ScoSh models apart from the traditional Scalar-on-Function (ScoF) regression models that incorporate full predictor functions. ScoSh is motivated by object data analysis, {\it, e.g.}, for neuro-anatomical objects, where object morphologies are relevant and their parameterizations are arbitrary. ScoSh also differs from methods that arbitrarily pre-register data and uses it in subsequent analysis. In contrast, ScoSh models perform registration during regression, using the (non-parametric) Fisher-Rao inner product and nonlinear index functions to capture complex predictor-response relationships. This formulation results in novel concepts of {\it regression phase} and {\it regression mean} of functions. Regression phases are time-warpings of predictor functions that optimize prediction errors, and regression means are optimal regression coefficients. We demonstrate practical applications of the ScoSh model using extensive simulated and real-data examples, including predicting COVID outcomes when daily rate curves are predictors. 
    more » « less
  3. Large-scale imaging studies often face challenges stemming from heterogeneity arising from differences in geographic location, instrumental setups, image acquisition protocols, study design, and latent variables that remain undisclosed. While numerous regression models have been developed to elucidate the interplay between imaging responses and relevant covariates, limited attention has been devoted to cases where the imaging responses pertain to the domain of shape. This adds complexity to the problem of imaging heterogeneity, primarily due to the unique properties inherent to shape representations, including nonlinearity, high-dimensionality, and the intricacies of quotient space geometry. To tackle this intricate issue, we propose a novel approach: a shape-on-scalar regression model that incorporates confounder adjustment. In particular, we leverage the square root velocity function to extract elastic shape representations which are embedded within the linear Hilbert space of square integrable functions. Subsequently, we introduce a shape regression model aimed at characterizing the intricate relationship between elastic shapes and covariates of interest, all while effectively managing the challenges posed by imaging heterogeneity. We develop comprehensive procedures for estimating and making inferences about the unknown model parameters. Through real-data analysis, our method demonstrates its superiority in terms of estimation accuracy when compared to existing approaches. 
    more » « less
  4. Abstract Functional data analysis (FDA) is a fast-growing area of research and development in statistics. While most FDA literature imposes the classical$$\mathbb {L}^2$$ L 2 Hilbert structure on function spaces, there is an emergent need for a different, shape-based approach for analyzing functional data. This paper reviews and develops fundamental geometrical concepts that help connect traditionally diverse fields of shape and functional analyses. It showcases that focusing on shapes is often more appropriate when structural features (number of peaks and valleys and their heights) carry salient information in data. It recaps recent mathematical representations and associated procedures for comparing, summarizing, and testing the shapes of functions. Specifically, it discusses three tasks: shape fitting, shape fPCA, and shape regression models. The latter refers to the models that separate the shapes of functions from their phases and use them individually in regression analysis. The ensuing results provide better interpretations and tend to preserve geometric structures. The paper also discusses an extension where the functions are not real-valued but manifold-valued. The article presents several examples of this shape-centric functional data analysis using simulated and real data. 
    more » « less
  5. It is well-known that morphological features in the brain undergo changes due to traumatic events and associated disorders such as post-traumatic stress disorder (PTSD). However, existing approaches typically offer group-level comparisons, and there are limited predictive approaches for modeling behavioral outcomes based on brain shape features that can account for heterogeneity in PTSD, which is of paramount interest. We propose a comprehensive shape analysis framework representing brain sub-structures, such as the hippocampus, amygdala, and putamen, as parameterized surfaces and quantifying their shape differences using an elastic shape metric. Under this metric, we compute shape summaries (mean, covariance, PCA) of brain sub-structures and represent individual brain shapes by their principal scores under a shape-PCA basis. These representations are rich enough to allow visualizations of full 3D structures and help understand localized changes. In order to validate the elastic shape analysis, we use the principal components (PCs) to reconstruct the brain structures and perform further evaluation by performing a regression analysis to model PTSD and trauma severity using the brain shapes representedviaPCs and in conjunction with auxiliary exposure variables. We apply our method to data from the Grady Trauma Project (GTP), where the goal is to predict clinical measures of PTSD. The framework seamlessly integrates accurate morphological features and other clinical covariates to yield superior predictive performance when modeling PTSD outcomes. Compared to vertex-wise analysis and other widely applied shape analysis methods, the elastic shape analysis approach results in considerably higher reconstruction accuracy for the brain shape and reveals significantly greater predictive power. It also helps identify local deformations in brain shapes associated with PTSD severity. 
    more » « less