We present enabling experimental tools and atom interferometer implementations in a vertical “fountain” geometry with ytterbium Bose–Einstein condensates. To meet the unique challenge of the heavy, non-magnetic atom, we apply a shaped optical potential to balance against gravity following evaporative cooling and demonstrate a double Mach–Zehnder interferometer suitable for applications such as gravity gradient measurements. Furthermore, we also investigate the use of a pulsed optical potential to act as a matter wave lens in the vertical direction during expansion of the Bose–Einstein condensate. This method is shown to be even more effective than the aforementioned shaped optical potential. The application of this method results in a reduction of velocity spread (or equivalently an increase in source brightness) of more than a factor of five, which we demonstrate using a two-pulse momentum-space Ramsey interferometer. The vertical geometry implementation of our diffraction beams ensures that the atomic center of mass maintains overlap with the pulsed atom optical elements, thus allowing extension of atom interferometer times beyond what is possible in a horizontal geometry. Our results thus provide useful tools for enhancing the precision of atom interferometry with ultracold ytterbium atoms. 
                        more » 
                        « less   
                    
                            
                            Observation of a gravitational Aharonov-Bohm effect
                        
                    
    
            Gravity curves space and time. This can lead to proper time differences between freely falling, nonlocal trajectories. A spatial superposition of a massive particle is predicted to be sensitive to this effect. We measure the gravitational phase shift induced in a matter-wave interferometer by a kilogram-scale source mass close to one of the wave packets. Deflections of each interferometer arm due to the source mass are independently measured. The phase shift deviates from the deflection-induced phase contribution, as predicted by quantum mechanics. In addition, the observed scaling of the phase shift is consistent with Heisenberg’s error-disturbance relation. These results show that gravity creates Aharonov-Bohm phase shifts analogous to those produced by electromagnetic interactions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2016244
- PAR ID:
- 10340035
- Date Published:
- Journal Name:
- Science
- Volume:
- 375
- Issue:
- 6577
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 226 to 229
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            García-Blanco, Sonia M.; Cheben, Pavel (Ed.)Diverse chip-based sensors utilizing integrated silicon photonics have been demonstrated in resonator and phase shifter/interferometer configurations. Till date, interferometric techniques with the Mach-Zehnder Interferometer (MZI) and Young’s interferometer have shown the lowest mass detection limits (in pg/mm2). Slow light in photonic crystal waveguides integrated with MZIs enables compact geometries due to enhanced optical path lengths as light propagates with high group index. In a typical MZI, light propagating in the signal arm overlaps with analytes and undergo a relative phase change with respect to the light in the reference arm which leads to measured output intensity changes. In this paper, using integrated photonic methods, we demonstrate a slow light enhanced Michelson interferometer (MI) biosensor, wherein the reference and signal arms are traversed twice by the propagating optical mode. As a result, the analyte interaction length is effectively doubled since the propagating optical mode undergoes twice the phase shift as would be observed in a MZI. In an asymmetric MI configuration, the resultant doubling of the phase shift is observed as a doubling of the resonance wavelength shift for a fixed change in the analyte concentration. The device sensitivity is thus doubled with respect to a conventional MZI while also effectively halving the geometric length compared to the MZI sensormore » « less
- 
            Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth’s gravity, the gravitational constant, deviations from Newtonian gravity and general relativity. However, using atoms in free fall limits measurement time to a few seconds, and much less when measuring interactions with a small source mass. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated. However, the optical lattice must balance Earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic efects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s−2, consistent with Newtonian gravity, ruling out ‘screened ffth force’ theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s−2 surpasses by more than a factor of four the best similar measurements with atoms in free fall. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges, compact gravimetry, measuring the gravitational Aharonov–Bohm effect and the gravitational constant, and testing whether the gravitational field has quantum properties.more » « less
- 
            Miller, Benjamin L.; Weiss, Sharon M.; Danielli, Amos (Ed.)We experimentally demonstrated slow wave enhanced phase and spectral sensitivity in asymmetric Michelson interferometer sensors with a phase sensitivity 277,750 rad/RIU-cm and theoretical phase sensitivity as high as 461,810 rad/RIU-cm. In the context of low-cost chip integrated photonic packaged sensors, in this paper we will experimentally demonstrate a method for active tuning of interferometer fringes using phase change materials that will potentially overcome fabrication induced variation of interference fringe wavelengths, thus allowing sensor chip packaging with a fixed wavelength laser and available integrated photodetectors.more » « less
- 
            The gravity from the quantum entanglement of space-time (GQuEST) experiment uses tabletop-scale Michelson laser interferometers to probe for fluctuations in space-time. We present a practicable interferometer design featuring a novel photon-counting readout method that provides unprecedented sensitivity, as it is not subject to the interferometric standard quantum limit. We evaluate the potential of this design to measure space-time fluctuations motivated by recent “geontropic” quantum gravity models. The accelerated accrual of Fisher information offered by the photon-counting readout enables GQuEST to detect the predicted quantum gravity phenomena within measurement times at least 100 times shorter than equivalent conventional interferometers. The GQuEST design, thus, enables a fast and sensitive search for signatures of quantum gravity in a laboratory-scale experiment. Published by the American Physical Society2025more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    