skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Experimental Evaluation of Semidefinite Programming and Spectral Algorithms for Max Cut
We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we compare the results of the Goemans and Williamson algorithm using semidefinite programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also compare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee, two additional spectral algorithms, and a heuristic from Burer, Monteiro, and Zhang (BMZ). The algorithms are tested on Erdős–Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the spectral algorithms and BMZ heuristic return cuts with values which are competitive with those of the SDP.  more » « less
Award ID(s):
2007009
PAR ID:
10536292
Author(s) / Creator(s):
;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
ACM Journal of Experimental Algorithmics
Volume:
28
ISSN:
1084-6654
Page Range / eLocation ID:
1 to 18
Subject(s) / Keyword(s):
Max cut, spectral algorithms
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schulz, Christian; Ucar, Bora (Ed.)
    We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we compare the results of the Goemans and Williamson algorithm using semidefinite programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also compare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee and two additional spectral algorithms. The algorithms are tested on Erdős-Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the spectral algorithms return cuts with values which are competitive with those of the SDP. 
    more » « less
  2. Assuming the Unique Games Conjecture (UGC), the best approximation ratio that can be obtained in polynomial time for the MAX CUT problem is αCUT ≃ 0.87856, obtained by the celebrated SDP-based approximation algorithm of Goemans and Williamson. The currently best approximation algorithm for MAX DI-CUT, i.e., the MAX CUT problem in directed graphs, achieves a ratio of about 0.87401, leaving open the question whether MAX DI-CUT can be approximated as well as MAX CUT. We obtain a slightly improved algorithm for MAX DI-CUT and a new UGC-hardness result for it, showing that 0.87446 ≤ αDI-CUT ≤ 0.87461, where αDI-CUT is the best approximation ratio that can be obtained in polynomial time for MAX DI-CUT under UGC. The new upper bound separates MAX DI-CUT from MAX CUT, resolving a question raised by Feige and Goemans. A natural generalization of MAX DI-CUT is the MAX 2-AND problem in which each constraint is of the form z1∧z2, where z1 and z2 are literals, i.e., variables or their negations (In MAX DI-CUT each constraint is of the form \neg{x1}∧x2, where x1 and x2 are variables.) Austrin separated MAX 2-AND from MAX CUT by showing that α2AND < 0.87435 and conjectured that MAX 2-AND and MAX DI-CUT have the same approximation ratio. Our new lower bound on MAX DI-CUT refutes this conjecture, completing the separation of the three problems MAX 2-AND, MAX DI-CUT and MAX CUT. We also obtain a new lower bound for MAX 2-AND, showing that 0.87414 ≤ α2AND ≤ 0.87435. Our upper bound on MAX DI-CUT is achieved via a simple, analytical proof. The lower bounds on MAX DI-CUT and MAX 2-AND (the new approximation algorithms) use experimentally-discovered distributions of rounding functions which are then verified via computer-assisted proofs. 
    more » « less
  3. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value oracle model examined by [Rubinstein et al., 2018]. Graph algorithms in this cut query model and other query models have recently been studied for various other problems such as min-cut, connectivity, bipartiteness, and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case of submodular function maximization: on query S ⊆ V, the oracle returns the total weight of the cut between S and V\S. Our first main technical result is a lower bound stating that a deterministic algorithm achieving a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut dimension to rule out approximation (prior work of [Graur et al., 2020] introducing the cut dimension only rules out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected weighted graphs (prior work of [Rubinstein et al., 2018] holds only for unweighted graphs). To complement these results, for most constants c ∈ (0,1], we nail down the query complexity of achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic factors). Analogously to general submodular function maximization in the same model, we observe a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/log n) queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic algorithm requires Ω(n²) queries to find an exact max-cut (enough to learn the entire graph). 
    more » « less
  4. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We give a randomized algorithm that approximates the number of independent sets in a dense, regular bipartite graph - in the language of approximate counting, we give an FPRAS for #BIS on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to "high-temperature" problems on bounded-degree graphs, and our contribution is a notable exception as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused complement to the long line of work in combinatorial optimization showing that CSPs such as Max-Cut and Unique Games are easy on dense graphs via spectral arguments. Our contributions include a novel extension of the method of graph containers that differs considerably from other recent low-temperature algorithms. The additional key insights come from spectral graph theory and have previously been successful in approximation algorithms. As a result, we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e., bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently. 
    more » « less
  5. Nikhil, Bansal; Nagarajan, Viswanath (Ed.)
    We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints. 
    more » « less