skip to main content

This content will become publicly available on April 1, 2023

Title: High-throughput calculation of atomic planar density for compounds
A large collection of element-wise planar densities for compounds obtained from the Materials Project is calculated using brute force computational geometry methods, where the planar density is given by the total fractional area of atoms intersecting a supercell's crystallographic plane divided by the area of the supercell's crystallographic plane. It is demonstrated that the element-wise maximum lattice plane densities can be useful as machine learning features. The methods described here are implemented in an open-source Mathematica package hosted at https://github.com/sgbaird/LatticePlane.
Authors:
;
Award ID(s):
1651668
Publication Date:
NSF-PAR ID:
10340389
Journal Name:
Journal of Applied Crystallography
Volume:
55
Issue:
2
Page Range or eLocation-ID:
380 to 385
ISSN:
1600-5767
Sponsoring Org:
National Science Foundation
More Like this
  1. The structure of zymonic acid (systematic name: 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-2-carboxylic acid), C 6 H 6 O 5 , which had previously eluded crystallographic determination, is presented here for the first time. It forms by intramolecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxopropanoic acid), C 3 H 4 O 3 , at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B 33 , 210–212]. In zymonic acid, the hydroxylactone ring ismore »close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carboxylic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carboxylic acid group relative to the ring is 12.04 (16)°. The pyruvic acid molecule is almost planar, having a dihedral angle between the carboxylic acid and methyl-ketone groups of 3.95 (6)°. Intermolecular interactions in both crystal structures are dominated by hydrogen bonding. The common R 2 2 (8) hydrogen-bonding motif links carboxylic acid groups on adjacent molecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C 2/ c , which forces the carboxylic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H...O and weak C—H...O), link molecules across a 2 1 -screw axis, and generate an R 2 2 (9) motif. These hydrogen-bonding interactions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related molecules are linked into R 2 2 (8) dimers, with van der Waals interactions between dimers as the only other intermolecular contacts.« less
  2. Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also bemore »used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane.« less
  3. Background. An assumption of Digital Image Correlation (DIC) is that the displacement field within each subset is relatively smooth, captured with reasonable accuracy by, for example, linear or quadratic shape functions. Although this assumption works well for many materials, it becomes problematic for heterogeneous materials, such as fiber networks, wherein the length scale of heterogeneity matches the size of a subset. Objective. Here we applied DIC to fibrous networks made of collagen, for which displacements at the scale of a subset are highly heterogeneous, but errors caused by the heterogeneity are difficult to quantify. We developed a method to quantifymore »such errors. Methods. We began by generating a synthetic three-dimensional fiber network with structure matching that of gels made of fibrous collagen. We then formulated an algorithm to mimic the way in which a confocal microscope images the fibers at its focal plane, thereby generating synthetic images similar to those obtained in experiments. Displacement boundary conditions were applied to the synthetic fiber networks, and the resulting displacement fields were computed using a finite element solver. DIC was applied to the synthetic images, and displacements were compared to the data from the finite element method, enabling rigorous quantification of error. Results. Point-wise errors in the DIC-measured displacements were substantial, often exceeding 40%, but over regions far larger than the length scales of heterogeneity or the DIC subset size, errors were modest, e.g., ≤15%. Conclusions. Although DIC can accurately measure displacements of fiber networks at length scales larger than the subset window, quantification of mechanical behavior at the scale of material heterogeneity will require new methods to complement or replace the use of DIC.« less
  4. Context. Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large (≳50 pc) and massive (≳10 5 M ⊙ ) filaments, know as giant molecular filaments (GMFs), may be linked to Galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. Yet our physical understanding of GMFs is still poor. Aims. We investigate the dense gas properties of one GMF, with the ultimate goal of connecting these dense gas tracers with star formation processes in the GMF. Methods. We imaged one entire GMF located at l ~ 52–54° longitude,more »GMF54 (~68 pc long), in the empirical dense gas tracers using the HCN(1–0), HNC(1–0), and HCO + (1–0) lines, and their 13 C isotopologue transitions, as well as the N 2 H + (1–0) line. We studied the dense gas distribution, the column density probability density functions (N-PDFs), and the line ratios within the GMF. Results. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to 13 CO(1–0). We constructed the N-PDFs of H 2 for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log–log representation, and the HCO + N-PDF has the flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star-forming and photon-dominated regions have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N 2 H + / 13 CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except Ultraluminous Infrared Galaxies. Conclusions. As the largest coherent cold gaseous structure in our Milky Way, GMFs, are outstanding candidates for connecting studies of star formation on Galactic and extragalactic scales. By analyzing a complete map of the dense gas in a GMF we have found that: (1) the dense gas N-PDFs appear flatter in more evolved regions and steeper in younger regions, and (2) its integrated dense gas intensity ratios are similar to those of nearby galaxies.« less
  5. We present a virtual element method (VEM)-based topology optimization framework using polyhedral elements, which allows for convenient handling of non-Cartesian design domains in three dimensions. We take full advantage of the VEM properties by creating a unified approach in which the VEM is employed in both the structural and the optimization phases. In the structural problem, the VEM is adopted to solve the three-dimensional elasticity equation. Compared to the finite element method, the VEM does not require numerical integration (when linear elements are used) and is less sensitive to degenerated elements (e.g., ones with skinny faces or small edges). Inmore »the optimization problem, we introduce a continuous approximation of material densities using the VEM basis functions. When compared to the standard element-wise constant approximation, the continuous approximation enriches the geometrical representation of structural topologies. Through two numerical examples with exact solutions, we verify the convergence and accuracy of both the VEM approximations of the displacement and material density fields. We also present several design examples involving non-Cartesian domains, demonstrating the main features of the proposed VEM-based topology optimization framework. The source code for a MATLAB implementation of the proposed work, named PolyTop3D, is available in the (electronic) Supplementary Material accompanying this publication.« less