Liu, Chang
(Ed.)
The synthesis of carbon nanotubes (CNTs) requires well-defined catalyst nanoparticles that can influence both diameter and chirality. Herein, catalyst nanoparticles containing both the catalyst and catalyst support material were developed. Bimetallic aluminum oxide–iron oxide (AlOx–Fe2O3) nanorice was synthesized from a mixture containing both aluminum and iron oleate precursors in the solution phase. The nanoparticles were assembled as a monolayer film on a silicon oxide (SiO2) substrate via organic linker molecules to synthesize vertically aligned carbon nanotubes (VA-CNTs). Microscopic and spectroscopic characterization of the premade catalyst nanoparticles and monolayer film assembly revealed the quality of the nanoscale assembly, which facilitated the successful growth of VA-CNTs. The length of the CNTs synthesized using these AlOx–Fe2O3 nanorice catalyst nanoparticles surpassed that of previously reported CNTs grown on bare SiO2 surfaces without oxide buffer layers. In addition, the CNTs appeared to be directly bonded/connected to the SiO2 substrate, suggesting CNT formation via the tip-growth mechanism. The effects of growth temperature and catalyst reduction time were evaluated to obtain high-yield VA-CNTs.
more »
« less
An official website of the United States government

