skip to main content

This content will become publicly available on June 1, 2023

Title: Universal anharmonic potential energy surfaces for XY 2 -type molecules
An approach to generate anharmonic potential energy surfaces for both linear and bent XY 2 -type molecules from their equilibrium geometries, Hessians, and total atomization energies alone is presented. Two key features of the potential energy surfaces are that (a) they reproduce the harmonic behavior around the equilibrium geometries exactly and (b) they have the correct limiting behavior with respect to total bond dissociation. The potentials are constructed from two diatomic potentials, for which both the Morse or Varshni potentials are tested, and a triatomic potential, for which modified forms of the Anderson- n potential are tested. Potential energy surfaces for several linear and bent molecules are constructed from ab initio data, and the third-order derivatives of these surfaces at their equilibrium geometries are compared to the results of finite difference computations. For bent molecules, the vibrational spectra predicted by vibrational configuration interaction calculations on these surfaces are compared to experiment. A modified version of the Anderson- n potential, in combination with the Varshni potential, is demonstrated to predict vibrational frequencies associated with bond angle bending an average of 20 cm −1 below the harmonic oscillator approximation and with a fourfold reduction in the root-mean-square deviation from experiment compared to more » the harmonic oscillator approximation. « less
Authors:
Award ID(s):
1919571
Publication Date:
NSF-PAR ID:
10340464
Journal Name:
AIP Advances
Volume:
12
Issue:
6
Page Range or eLocation-ID:
065012
ISSN:
2158-3226
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sums of theNlowest energy levels for quantum particles bound by potentials are calculated, emphasising the semiclassical regimeN  ≫  1. Euler-Maclaurin summation, together with a regularisation, gives a formula for these energy sums, involving only the levelsN  +  1,N  +  2…. For the harmonic oscillator and the particle in a box, the formula is exact. For wells where the levels are known approximately (e.g. as a WKB series), with the higher levels being more accurate, the formula improves accuracy by avoiding the lower levels. For a linear potential, the formula gives the first Airy zero with an error of order 10−7. For the Pöschl–Teller potential, regularisation is not immediately applicable but the energy sum can be calculated exactly; its semiclassical approximation depends on howNand the well depth are linked. In more dimensions, the Euler–Maclaurin technique is applied to give an analytical formula for the energy sum for a free particle on a torus, using levels determined by the smoothed spectral staircase plus some oscillatory corrections from short periodic orbits.

  2. Abstract

    Classical turning surfaces of Kohn–Sham potentials separate classically allowed regions (CARs) from classically forbidden regions (CFRs). They are useful for understanding many chemical properties of molecules but need not exist in solids, where the density never decays to zero. At equilibrium geometries, we find that CFRs are absent in perfect metals, rare in covalent semiconductors at equilibrium, but common in ionic and molecular crystals. In all materials, CFRs appear or grow as the internuclear distances are uniformly expanded. They can also appear at a monovacancy in a metal. Calculations with several approximate density functionals and codes confirm these behaviors. A classical picture of conduction suggests that CARs should be connected in metals, and disconnected in wide-gap insulators, and is confirmed in the limits of extreme compression and expansion. Surprisingly, many semiconductors have no CFR at equilibrium, a key finding for density functional construction. Nonetheless, a strong correlation with insulating behavior can still be inferred. Moreover, equilibrium bond lengths for all cases can be estimated from the bond type and the sum of the classical turning radii of the free atoms or ions.

  3. Recent observations of chloromethane in interstellar environments suggest that other organohalogens, which are known to be critically important in Earth's atmosphere, may also be of significance beyond our own terrestrial veil. This raises the question of how such molecules behave under extreme conditions such as when exposed to vacuum ultraviolet (VUV) radiation. VUV photons promote molecules to highly excited states that fragment in non-statistical patterns controlled by the initial femtosecond dynamics. A detailed understanding of VUV-driven photochemistry in complex organic molecules that consist of more than one functional group is a particularly challenging task. This quantum chemical analysis reports the electronic states and ionization potentials up to the VUV range (6–11 eV) of the chlorine-substituted cumulenone series molecules. The valence and Rydberg properties of lone-pair terminated, π-conjugated systems are explored for their potential resonance with lone pairs from elsewhere in the system. The carbon chain elongation within the family ClHC n O, where n = 1–4, influences the electronic excitations, associated wavefunctions, and ionization potentials of the molecules. The predicted geometries and ionization potentials are in good agreement with the available experimental photoelectron spectra for formyl chloride and chloroketene, n = 1–2. Furthermore, comparison between the regular cumulenone species andmore »the corresponding chlorinated derivatives exhibit similar behaviors especially for n = 3, where the allene backbone in propadienone chloride is severely bent. Most notably for the excited states is that the Rydberg character becomes more dominant as the energy increases, with some retaining valence characters.« less
  4. We report vibrational spectra of the H 2 -tagged, cryogenically cooled X −  · HOCl (X = Cl, Br, and I) ion–molecule complexes and analyze the resulting band patterns with electronic structure calculations and an anharmonic theoretical treatment of nuclear motions on extended potential energy surfaces. The complexes are formed by “ligand exchange” reactions of X −  · (H 2 O) n clusters with HOCl molecules at low pressure (∼10 −2  mbar) in a radio frequency ion guide. The spectra generally feature many bands in addition to the fundamentals expected at the double harmonic level. These “extra bands” appear in patterns that are similar to those displayed by the X −  · HOD analogs, where they are assigned to excitations of nominally IR forbidden overtones and combination bands. The interactions driving these features include mechanical and electronic anharmonicities. Particularly intense bands are observed for the v = 0 → 2 transitions of the out-of-plane bending soft modes of the HOCl molecule relative to the ions. These involve displacements that act to break the strong H-bond to the ion, which give rise to large quadratic dependences of the electric dipoles (electronic anharmonicities) that drive the transition moments for the overtone bands. On the othermore »hand, overtone bands arising from the intramolecular OH bending modes of HOCl are traced to mechanical anharmonic coupling with the v = 1 level of the OH stretch (Fermi resonances). These interactions are similar in strength to those reported earlier for the X −  · HOD complexes.« less
  5. Great progress has been made in recent years towards understanding the properties of disordered electronic systems. In part, this is made possible by recent advances in quantum effective medium methods which enable the study of disorder and electron-electronic interactions on equal footing. They include dynamical mean-field theory and the Coherent Potential Approximation, and their cluster extension, the dynamical cluster approximation. Despite their successes, these methods do not enable the first-principles study of the strongly disordered regime, including the effects of electronic localization. The main focus of this review is the recently developed typical medium dynamical cluster approximation for disordered electronic systems. This method has been constructed to capture disorder-induced localization and is based on a mapping of a lattice onto a quantum cluster embedded in an effective typical medium, which is determined self-consistently. Unlike the average effective medium-based methods mentioned above, typical medium-based methods properly capture the states localized by disorder. The typical medium dynamical cluster approximation not only provides the proper order parameter for Anderson localized states, but it can also incorporate the full complexity of Density-Functional Theory (DFT)-derived potentials into the analysis, including the effect of multiple bands, non-local disorder, and electron-electron interactions. After a brief historical reviewmore »of other numerical methods for disordered systems, we discuss coarse-graining as a unifying principle for the development of translationally invariant quantum cluster methods. Together, the Coherent Potential Approximation, the Dynamical Mean-Field Theory and the Dynamical Cluster Approximation may be viewed as a single class of approximations with a much-needed small parameter of the inverse cluster size which may be used to control the approximation. We then present an overview of various recent applications of the typical medium dynamical cluster approximation to a variety of models and systems, including single and multiband Anderson model, and models with local and off-diagonal disorder. We then present the application of the method to realistic systems in the framework of the DFT and demonstrate that the resulting method can provide a systematic first-principles method validated by experiment and capable of making experimentally relevant predictions. We also discuss the application of the typical medium dynamical cluster approximation to systems with disorder and electron-electron interactions. Most significantly, we show that in the limits of strong disorder and weak interactions treated perturbatively, that the phenomena of 3D localization, including a mobility edge, remains intact. However, the metal-insulator transition is pushed to larger disorder values by the local interactions. We also study the limits of strong disorder and strong interactions capable of producing moment formation and screening, with a non-perturbative local approximation. Here, we find that the Anderson localization quantum phase transition is accompanied by a quantum-critical fan in the energy-disorder phase diagram.« less