skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Residually finite dimensional algebras and polynomial almost identities
Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon,  more » « less
Award ID(s):
1702152
PAR ID:
10341067
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Algebra and Its Applications
Volume:
21
Issue:
02
ISSN:
0219-4988
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance. 
    more » « less
  2. We show that a complete [Formula: see text]-dimensional Riemannian manifold [Formula: see text] with finitely generated first homology has macroscopic dimension [Formula: see text] if it satisfies the following “macroscopic curvature” assumptions: every ball of radius [Formula: see text] in [Formula: see text] has volume at most [Formula: see text], and every loop in every ball of radius [Formula: see text] in [Formula: see text] is null-homologous in the concentric ball of radius [Formula: see text]. 
    more » « less
  3. This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper. 
    more » « less
  4. null (Ed.)
    Assume [Formula: see text]. Let [Formula: see text] be a [Formula: see text] equivalence relation coded in [Formula: see text]. [Formula: see text] has an ordinal definable equivalence class without any ordinal definable elements if and only if [Formula: see text] is unpinned. [Formula: see text] proves [Formula: see text]-class section uniformization when [Formula: see text] is a [Formula: see text] equivalence relation on [Formula: see text] which is pinned in every transitive model of [Formula: see text] containing the real which codes [Formula: see text]: Suppose [Formula: see text] is a relation on [Formula: see text] such that each section [Formula: see text] is an [Formula: see text]-class, then there is a function [Formula: see text] such that for all [Formula: see text], [Formula: see text]. [Formula: see text] proves that [Formula: see text] is Jónsson whenever [Formula: see text] is an ordinal: For every function [Formula: see text], there is an [Formula: see text] with [Formula: see text] in bijection with [Formula: see text] and [Formula: see text]. 
    more » « less
  5. null (Ed.)
    We consider the minimum norm interpolation problem in the [Formula: see text] space, aiming at constructing a sparse interpolation solution. The original problem is reformulated in the pre-dual space, thereby inducing a norm in a related finite-dimensional Euclidean space. The dual problem is then transformed into a linear programming problem, which can be solved by existing methods. With that done, the original interpolation problem is reduced by solving an elementary finite-dimensional linear algebra equation. A specific example is presented to illustrate the proposed method, in which a sparse solution in the [Formula: see text] space is compared to the dense solution in the [Formula: see text] space. This example shows that a solution of the minimum norm interpolation problem in the [Formula: see text] space is indeed sparse, while that of the minimum norm interpolation problem in the [Formula: see text] space is not. 
    more » « less