skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Data-Driven Framework to Select a Cost-Efficient Subset of Parameters to Qualify Sourced Materials
The quality of powder processed for manufacturing can be certified by hundreds of different variables. Assessing the impact of all these different metrics on the performance of additively manufactured engineered products is an invaluable, but time intensive specification process. In this work, a comprehensive, generalizable, data-driven framework was implemented to select the optimal powder processing and microstructure variables that are required to predict the target property variables. The framework was demonstrated on a high-dimensional dataset collected from selective laser melted, additively manufactured, Inconel 718. One hundred and twenty-nine powder quality variables including particle morphology, rheology, chemical composition, and build composition, were assessed for their impact on eight microstructural features and sixteen mechanical properties. The importance of each powder and microstructure variable was determined by using statistical analysis and machine learning models. The trained models predicted target mechanical properties with an R2 value of 0.9 or higher. The results indicate that the desired mechanical properties can be achieved by controlling only a few critical powder properties and without the need for collecting microstructure data. This framework significantly reduces the time and cost of qualifying source materials for production by determining an optimal subset of experiments needed to predict that a given source material will lead to a desired outcome. This general framework can be easily applied to other material systems.  more » « less
Award ID(s):
1552716
PAR ID:
10341483
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Integrating Materials and Manufacturing Innovation
ISSN:
2193-9764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additively manufactured stainless steels have become increasingly popular due to their desirable properties, but their mechanical behavior in structural parts is not yet fully understood. Specifically, the impact of columnar microstructures on fatigue behavior is still unclear. A typical directed energy deposition (DED)‐fabricated 316L stainless steel microstructure consists of distinct zones with equiaxed and columnar grains. To answer the question of how these zones of a DED‐fabricated 316L stainless steel microstructure affect the local mechanical behavior individually, such as the fatigue strength, stress/strain distribution, and fatigue life, crystal plasticity simulations are conducted to investigate the influence of microstructure on local mechanical behavior such as fatigue strength, stress/strain distribution, and fatigue life. The simulations find that columnar microstructures exhibit better fatigue strength than equiaxed structures when the load is parallel to the major axis of the columnar grains, but the strength decreases when the load is perpendicular. This study also uses machine learning to predict fatigue life, which shows good agreement with crystal plasticity modeling. The study suggests that the combined crystal plasticity–machine learning approach is an effective way to predict the fatigue behavior of additively manufactured components. 
    more » « less
  2. Abstract Mechanical properties of additively manufactured structures fabricated using material extrusion additive manufacturing are predicted through combining thermal modeling with entanglement theory and molecular dynamics approaches. A one-dimensional model of heat transfer in a single road width wall is created and validated against both thermography and mechanical testing results. Various model modifications are investigated to determine which heat transfer considerations are important to predicting properties. This approach was able to predict tear energies on reasonable scales with minimal information about the polymer. Such an approach is likely to be applicable to a wide range of amorphous and low crystallinity thermoplastics. 
    more » « less
  3. The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries. 
    more » « less
  4. ABSTRACTElectro-chemical polishing (ECP) was utilized to produce sub-micron surface finish on Inconel 718 parts manufactured by Laser Powder-Bed-Fusion (L-PBF) and extrusion methods. The L-PBF parts had very rough surfaces due to semi-welded powder particles, surface defects, and difference layer steps that were generally not found on surfaces of extruded and machined components. This study compared the results of electro-polishing of these differently manufactured parts under the same conditions. Titanium electrode was used with an acid-based electrolyte to polish both the specimens at different combinations of pulsed current density, duty cycle, and polishing time. Digital 3D optical profiler was used to assess the surface finish, while optical and scanning electron microscopy was utilized to observe the microstructure of polished specimens. At optimal condition, the ECP successfully reduced the surface of L-PBF part from 17 µm to 0.25 µm; further polishing did not improve the surface finish due to different removal rates of micro-leveled pores, cracks, nonconductive phases, and carbide particles in 3D-printed Inconel 718. The microstructure of extruded materials was uniform and free of processing defects, therefore can be polished consistently to 0.20 µm. Over-polishing of extruded material could improve its surface finish, but not for the L-PBF material due to defects and the surrounding micro-strain. 
    more » « less
  5. With an unprecedented combination of mechanical and electrical properties, polymer nanocomposites have the potential to be widely used across multiple industries. Tailoring nanocomposites to meet application specific requirements remains a challenging task, owing to the vast, mixed-variable design space that includes composition ( i.e. choice of polymer, nanoparticle, and surface modification) and microstructures ( i.e. dispersion and geometric arrangement of particles) of the nanocomposite material. Modeling properties of the interphase, the region surrounding a nanoparticle, introduces additional complexity to the design process and requires computationally expensive simulations. As a result, previous attempts at designing polymer nanocomposites have focused on finding the optimal microstructure for only a fixed combination of constituents. In this article, we propose a data centric design framework to concurrently identify optimal composition and microstructure using mixed-variable Bayesian optimization. This framework integrates experimental data with state-of-the-art techniques in interphase modeling, microstructure characterization and reconstructions and machine learning. Latent variable Gaussian processes (LVGPs) quantifies the lack-of-data uncertainty over the mixed-variable design space that consists of qualitative and quantitative material design variables. The design of electrically insulating nanocomposites is cast as a multicriteria optimization problem with the goal of maximizing dielectric breakdown strength while minimizing dielectric permittivity and dielectric loss. Within tens of simulations, our method identifies a diverse set of designs on the Pareto frontier indicating the tradeoff between dielectric properties. These findings project data centric design, effectively integrating experimental data with simulations for Bayesian Optimization, as an effective approach for design of engineered material systems. 
    more » « less