Abstract Cortical ischaemic strokes result in cognitive deficits depending on the area of the affected brain. However, we have demonstrated that difficulties with attention and processing speed can occur even with small subcortical infarcts. Symptoms appear independent of lesion location, suggesting they arise from generalized disruption of cognitive networks. Longitudinal studies evaluating directional measures of functional connectivity in this population are lacking. We evaluated six patients with minor stroke exhibiting cognitive impairment 6–8 weeks post-infarct and four age-similar controls. Resting-state magnetoencephalography data were collected. Clinical and imaging evaluations of both groups were repeated 6- and 12 months later. Network Localized Granger Causality was used to determine differences in directional connectivity between groups and across visits, which were correlated with clinical performance. Directional connectivity patterns remained stable across visits for controls. After the stroke, inter-hemispheric connectivity between the frontoparietal cortex and the non-frontoparietal cortex significantly increased between visits 1 and 2, corresponding to uniform improvement in reaction times and cognitive scores. Initially, the majority of functional links originated from non-frontal areas contralateral to the lesion, connecting to ipsilesional brain regions. By visit 2, inter-hemispheric connections, directed from the ipsilesional to the contralesional cortex significantly increased. At visit 3, patients demonstrating continued favourable cognitive recovery showed less reliance on these inter-hemispheric connections. These changes were not observed in those without continued improvement. Our findings provide supporting evidence that the neural basis of early post-stroke cognitive dysfunction occurs at the network level, and continued recovery correlates with the evolution of inter-hemispheric connectivity.
more »
« less
NLGC: Network Localized Granger Causality with Application to MEG Directional Functional Connectivity Analysis
Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magne- toencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network- level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.
more »
« less
- Award ID(s):
- 1734892
- PAR ID:
- 10341493
- Date Published:
- Journal Name:
- NeuroImage
- ISSN:
- 1053-8119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Situated models of emotion hypothesize that emotions are optimized for the context at hand, but most neuroimaging approaches ignore context. For the first time, we applied Granger causality (GC) analysis to determine how an emotion is affected by a person’s cultural background and situation. Electroencephalographic recordings were obtained from mainland Chinese (CHN) and US participants as they viewed and rated fearful and neutral images displaying either social or non-social contexts. Independent component analysis and GC analysis were applied to determine the epoch of peak effect for each condition and to identify sources and sinks among brain regions of interest. We found that source–sink couplings differed across culture, situation and culture × situation. Mainland CHN participants alone showed preference for an early-onset source–sink pairing with the supramarginal gyrus as a causal source, suggesting that, relative to US participants, CHN participants more strongly prioritized a scene’s social aspects in their response to fearful scenes. Our findings suggest that the neural representation of fear indeed varies according to both culture and situation and their interaction in ways that are consistent with norms instilled by cultural background.more » « less
-
Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Our results elucidate computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggest a role for phase transitions in explaining nonlinear modulations of cortical computations.more » « less
-
Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence-level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in nonidentical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition. MEG Data MEG data is in FIFF format and can be opened with MNE-Python. Data has been directly converted from the acquisition device native format without any preprocessing. Events contained in the data indicate the stimuli in numerical order. Subjects R2650 and R2652 heard stimulus 11b instead of 11. Predictor Variables The original audio files are copyrighted and cannot be shared, but the make_audio folder contains make_clips.py which can be used to extract the exact clips from the commercially available audiobook (ISBN 978-1480555280). The predictors directory contains all the predictors used in the original study as pickled eelbrain objects. They can be loaded in Python with the eelbrain.load.unpickle function. The TextGrids directory contains the TextGrids aligned to the audio files. Source Localization The localization.zip file contains files needed for source localization. Structural brain models used in the published analysis are reconstructed by scaling the FreeSurfer fsaverage brain (distributed with FreeSurfer) based on each subject's `MRI scaling parameters.cfg` file. This can be done using the `mne.scale_mri` function. Each subject's MEG folder contains a `subject-trans.fif` file which contains the coregistration between MEG sensor space and (scaled) MRI space, which is used to compute the forward solution.more » « less
-
Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts theoppositeof the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.more » « less
An official website of the United States government

