skip to main content

Title: On Bayesian data assimilation for PDEs with ill-posed forward problems
Abstract We study Bayesian data assimilation (filtering) for time-evolution Partial differential equations (PDEs), for which the underlying forward problem may be very unstable or ill-posed. Such PDEs, which include the Navier–Stokes equations of fluid dynamics, are characterized by a high sensitivity of solutions to perturbations of the initial data, a lack of rigorous global well-posedness results as well as possible non-convergence of numerical approximations. Under very mild and readily verifiable general hypotheses on the forward solution operator of such PDEs, we prove that the posterior measure expressing the solution of the Bayesian filtering problem is stable with respect to perturbations of the noisy measurements, and we provide quantitative estimates on the convergence of approximate Bayesian filtering distributions computed from numerical approximations. For the Navier–Stokes equations, our results imply uniform stability of the filtering problem even at arbitrarily small viscosity, when the underlying forward problem may become ill-posed, as well as the compactness of numerical approximants in a suitable metric on time-parametrized probability measures.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inverse Problems
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We consider the simulation of Bayesian statistical inverse problems governed by large-scale linear and nonlinear partial differential equations (PDEs). Markov chain Monte Carlo (MCMC) algorithms are standard techniques to solve such problems. However, MCMC techniques are computationally challenging as they require a prohibitive number of forward PDE solves. The goal of this paper is to introduce a fractional deep neural network (fDNN) based approach for the forward solves within an MCMC routine. Moreover, we discuss some approximation error estimates. We illustrate the efficiency of fDNN on inverse problems governed by nonlinear elliptic PDEs and the unsteady Navier–Stokes equations. In the former case, two examples are discussed, respectively depending on two and 100 parameters, with significant observed savings. The unsteady Navier–Stokes example illustrates that fDNN can outperform existing DNNs, doing a better job of capturing essential features such as vortex shedding.

    more » « less
  2. Abstract

    We investigate error bounds for numerical solutions of divergence structure linear elliptic partial differential equations (PDEs) on compact manifolds without boundary. Our focus is on a class of monotone finite difference approximations, which provide a strong form of stability that guarantees the existence of a bounded solution. In many settings including the Dirichlet problem, it is easy to show that the resulting solution error is proportional to the formal consistency error of the scheme. We make the surprising observation that this need not be true for PDEs posed on compact manifolds without boundary. We propose a particular class of approximation schemes built around an underlying monotone scheme with consistency error $O(h^{\alpha })$. By carefully constructing barrier functions, we prove that the solution error is bounded by $O(h^{\alpha /(d+1)})$ in dimension $d$. We also provide a specific example where this predicted convergence rate is observed numerically. Using these error bounds, we further design a family of provably convergent approximations to the solution gradient.

    more » « less
  3. For the inverse problem in physical models, one measures the solution and infers the model parameters using information from the collected data. Oftentimes, these data are inadequate and render the inverse problem ill-posed. We study the ill-posedness in the context of optical imaging, which is a medical imaging technique that uses light to probe (bio-)tissue structure. Depending on the intensity of the light, the forward problem can be described by different types of equations. High-energy light scatters very little, and one uses the radiative transfer equation (RTE) as the model; low-energy light scatters frequently, so the diffusion equation (DE) suffices to be a good approximation. A multiscale approximation links the hyperbolic-type RTE with the parabolic-type DE. The inverse problems for the two equations have a multiscale passage as well, so one expects that as the energy of the photons diminishes, the inverse problem changes from well- to ill-posed. We study this stability deterioration using the Bayesian inference. In particular, we use the Kullback–Leibler divergence between the prior distribution and the posterior distribution based on the RTE to prove that the information gain from the measurement vanishes as the energy of the photons decreases, so that the inverse problem is ill-posed in the diffusive regime. In the linearized setting, we also show that the mean square error of the posterior distribution increases as we approach the diffusive regime. 
    more » « less
  4. null (Ed.)
    Abstract We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known (Langa, J. A., Real, J. & Simon, J. (2003) Existence and regularity of the pressure for the stochastic Navier--Stokes equations. Appl. Math. Optim., 48, 195--210) that the pressure solution has low regularity, which manifests in suboptimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations; see Feng X., & Qiu, H. (Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. arXiv:1905.03289v2 [math.NA]). We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods and that this conceptual idea may be used to retool numerical methods that are well known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptual usefulness of the proposed numerical approach. 
    more » « less
  5. The velocity–vorticity formulation of the 3D Navier–Stokes equations was recently found to give excellent numerical results for flows with strong rotation. In this work, we propose a new regularization of the 3D Navier–Stokes equations, which we call the 3D velocity–vorticity-Voigt (VVV) model, with a Voigt regularization term added to momentum equation in velocity–vorticity form, but with no regularizing term in the vorticity equation. We prove global well-posedness and regularity of this model under periodic boundary conditions. We prove convergence of the model's velocity and vorticity to their counterparts in the 3D Navier–Stokes equations as the Voigt modeling parameter tends to zero. We prove that the curl of the model's velocity converges to the model vorticity (which is solved for directly), as the Voigt modeling parameter tends to zero. Finally, we provide a criterion for finite-time blow-up of the 3D Navier–Stokes equations based on this inviscid regularization. 
    more » « less