The novel coronavirus SARS-CoV-2 and resulting COVID-19 disease have had an unprecedented spread and continue to cause an increasing number of fatalities worldwide. While vaccines are still under development, social distancing, extensive testing, and quarantining of confirmed infected subjects remain the most effective measures to contain the pandemic. These measures carry a significant socioeconomic cost. In this work, we introduce a novel optimization-based decision-making framework for managing the COVID-19 outbreak in the US. This includes modeling the dynamics of affected populations, estimating the model parameters and hidden states from data, and an optimal control strategy for sequencing social distancing and testing events such that the number of infections is minimized. The analysis of our extensive computational efforts reveals that social distancing and quarantining are most effective when implemented early, with quarantining of confirmed infected subjects having a much higher impact. Further, we find that “on-off” policies alternating between strict social distancing and relaxing such restrictions can be effective at “flattening” the curve while likely minimizing social and economic cost.
Control of COVID-19 outbreak using an extended SEIR model
The outbreak of COVID-19 resulted in high death tolls all over the world. The aim of this paper is to show how a simple SEIR model was used to make quick predictions for New Jersey in early March 2020 and call for action based on data from China and Italy. A more refined model, which accounts for social distancing, testing, contact tracing and quarantining, is then proposed to identify containment measures to minimize the economic cost of the pandemic. The latter is obtained taking into account all the involved costs including reduced economic activities due to lockdown and quarantining as well as the cost for hospitalization and deaths. The proposed model allows one to find optimal strategies as combinations of implementing various non-pharmaceutical interventions and study different scenarios and likely initial conditions.
- Award ID(s):
- 2033580
- Publication Date:
- NSF-PAR ID:
- 10341800
- Journal Name:
- Mathematical Models and Methods in Applied Sciences
- Volume:
- 31
- Issue:
- 12
- Page Range or eLocation-ID:
- 2399 to 2424
- ISSN:
- 0218-2025
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
In the past, epidemics such as AIDS, measles, SARS, H1N1 influenza, and tuberculosis caused the death of millions of people around the world. In response, intensive research is evolving to design efficient drugs and vaccines. However, studies warn that new pandemics such as Coronavirus (COVID-19), variants, and even deadly pandemics can emerge in the future. The existing epidemic confinement approaches rely on a large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size-fits-all control technique, which might not be effective. To overcome this, in this work, we develop a game-theory-inspired approach that considers societal and economic impacts and formulates epidemic control as a non-zero-sum game. Further, the proposed approach considers the demographic information that provides a tailored solution to each demography. We explore different strategies, including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations, and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on the economy. To facilitate scalability, we propose a novel graph learning approach, which learns from the previously obtained COVID-19 game outputs and mobility rates of one state (region)more »
-
In the last decades, emerging and re-emerging epidemics such as AIDS, measles, SARS, HINI influenza, and tuberculosis cause death to millions of people each year. In response, a large and intensive research is evolving for the design of better drugs and vaccines. However, studies warn that the new pandemics such as Coronavirus (COVID-19) and even deadly pandemics can emerge in the future. The existing confinement approaches rely on large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size fits all approach, which might not be effective. In contrast, we develop a game-theory inspired approach that considers societal and economic impacts and formulates the epidemic control as a non-zero sum dynamic game. Further, the proposed approach considers the demographic information leading to providing a tailored solution to each demography. We explore different strategies including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on economy.
-
Distributed flexible AC transmission systems (D-FACTS) has become increasingly popular in recent years. Among all types of D-FACTS devices, variable-impedance D-FACTS is the most cost-effective. However, integration of these devices within an optimal power flow problem introduces nonlinearities that are computationally challenging. In this study, a computationally efficient stochastic optimization model is proposed to optimally allocate variable-impedance D-FACTS considering the randomness of wind power output and load variation. The optimal locations and economic benefits of D-FACTS are compared with those of conventional FACTS. The results show that D-FACTS devices are more cost-effective than conventional FACTS, considering complex operation conditions in a transmission network. The economic benefits will increase if periodical redeployment of D-FACTS is allowed.
-
Background The COVID-19 pandemic has caused several disruptions in personal and collective lives worldwide. The uncertainties surrounding the pandemic have also led to multifaceted mental health concerns, which can be exacerbated with precautionary measures such as social distancing and self-quarantining, as well as societal impacts such as economic downturn and job loss. Despite noting this as a “mental health tsunami”, the psychological effects of the COVID-19 crisis remain unexplored at scale. Consequently, public health stakeholders are currently limited in identifying ways to provide timely and tailored support during these circumstances. Objective Our study aims to provide insights regarding people’s psychosocial concerns during the COVID-19 pandemic by leveraging social media data. We aim to study the temporal and linguistic changes in symptomatic mental health and support expressions in the pandemic context. Methods We obtained about 60 million Twitter streaming posts originating from the United States from March 24 to May 24, 2020, and compared these with about 40 million posts from a comparable period in 2019 to attribute the effect of COVID-19 on people’s social media self-disclosure. Using these data sets, we studied people’s self-disclosure on social media in terms of symptomatic mental health concerns and expressions of support. We employedmore »