skip to main content

Title: Control of COVID-19 outbreak using an extended SEIR model
The outbreak of COVID-19 resulted in high death tolls all over the world. The aim of this paper is to show how a simple SEIR model was used to make quick predictions for New Jersey in early March 2020 and call for action based on data from China and Italy. A more refined model, which accounts for social distancing, testing, contact tracing and quarantining, is then proposed to identify containment measures to minimize the economic cost of the pandemic. The latter is obtained taking into account all the involved costs including reduced economic activities due to lockdown and quarantining as well as the cost for hospitalization and deaths. The proposed model allows one to find optimal strategies as combinations of implementing various non-pharmaceutical interventions and study different scenarios and likely initial conditions.
Authors:
; ; ; ; ; ;
Award ID(s):
2033580
Publication Date:
NSF-PAR ID:
10341800
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
31
Issue:
12
Page Range or eLocation-ID:
2399 to 2424
ISSN:
0218-2025
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The novel coronavirus SARS-CoV-2 and resulting COVID-19 disease have had an unprecedented spread and continue to cause an increasing number of fatalities worldwide. While vaccines are still under development, social distancing, extensive testing, and quarantining of confirmed infected subjects remain the most effective measures to contain the pandemic. These measures carry a significant socioeconomic cost. In this work, we introduce a novel optimization-based decision-making framework for managing the COVID-19 outbreak in the US. This includes modeling the dynamics of affected populations, estimating the model parameters and hidden states from data, and an optimal control strategy for sequencing social distancing and testing events such that the number of infections is minimized. The analysis of our extensive computational efforts reveals that social distancing and quarantining are most effective when implemented early, with quarantining of confirmed infected subjects having a much higher impact. Further, we find that “on-off” policies alternating between strict social distancing and relaxing such restrictions can be effective at “flattening” the curve while likely minimizing social and economic cost.

  2. In the past, epidemics such as AIDS, measles, SARS, H1N1 influenza, and tuberculosis caused the death of millions of people around the world. In response, intensive research is evolving to design efficient drugs and vaccines. However, studies warn that new pandemics such as Coronavirus (COVID-19), variants, and even deadly pandemics can emerge in the future. The existing epidemic confinement approaches rely on a large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size-fits-all control technique, which might not be effective. To overcome this, in this work, we develop a game-theory-inspired approach that considers societal and economic impacts and formulates epidemic control as a non-zero-sum game. Further, the proposed approach considers the demographic information that provides a tailored solution to each demography. We explore different strategies, including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations, and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on the economy. To facilitate scalability, we propose a novel graph learning approach, which learns from the previously obtained COVID-19 game outputs and mobility rates of one state (region)more »depending on the other to produce an optimal solution. Our optimal solution is strategized to restrict the mobility between states based on the impact they are causing on COVID-19 spread. We aim to control the COVID-19 spread by more than 50% and model a dynamic solution that can be applied to different strains of COVID-19. Real-world demographic conditions specific to each state are created, and an optimal strategic solution is obtained to reduce the infection rate in each state by more than 50%.« less
  3. In the last decades, emerging and re-emerging epidemics such as AIDS, measles, SARS, HINI influenza, and tuberculosis cause death to millions of people each year. In response, a large and intensive research is evolving for the design of better drugs and vaccines. However, studies warn that the new pandemics such as Coronavirus (COVID-19) and even deadly pandemics can emerge in the future. The existing confinement approaches rely on large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size fits all approach, which might not be effective. In contrast, we develop a game-theory inspired approach that considers societal and economic impacts and formulates the epidemic control as a non-zero sum dynamic game. Further, the proposed approach considers the demographic information leading to providing a tailored solution to each demography. We explore different strategies including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on economy.
  4. Distributed flexible AC transmission systems (D-FACTS) has become increasingly popular in recent years. Among all types of D-FACTS devices, variable-impedance D-FACTS is the most cost-effective. However, integration of these devices within an optimal power flow problem introduces nonlinearities that are computationally challenging. In this study, a computationally efficient stochastic optimization model is proposed to optimally allocate variable-impedance D-FACTS considering the randomness of wind power output and load variation. The optimal locations and economic benefits of D-FACTS are compared with those of conventional FACTS. The results show that D-FACTS devices are more cost-effective than conventional FACTS, considering complex operation conditions in a transmission network. The economic benefits will increase if periodical redeployment of D-FACTS is allowed.
  5. Background The COVID-19 pandemic has caused several disruptions in personal and collective lives worldwide. The uncertainties surrounding the pandemic have also led to multifaceted mental health concerns, which can be exacerbated with precautionary measures such as social distancing and self-quarantining, as well as societal impacts such as economic downturn and job loss. Despite noting this as a “mental health tsunami”, the psychological effects of the COVID-19 crisis remain unexplored at scale. Consequently, public health stakeholders are currently limited in identifying ways to provide timely and tailored support during these circumstances. Objective Our study aims to provide insights regarding people’s psychosocial concerns during the COVID-19 pandemic by leveraging social media data. We aim to study the temporal and linguistic changes in symptomatic mental health and support expressions in the pandemic context. Methods We obtained about 60 million Twitter streaming posts originating from the United States from March 24 to May 24, 2020, and compared these with about 40 million posts from a comparable period in 2019 to attribute the effect of COVID-19 on people’s social media self-disclosure. Using these data sets, we studied people’s self-disclosure on social media in terms of symptomatic mental health concerns and expressions of support. We employedmore »transfer learning classifiers that identified the social media language indicative of mental health outcomes (anxiety, depression, stress, and suicidal ideation) and support (emotional and informational support). We then examined the changes in psychosocial expressions over time and language, comparing the 2020 and 2019 data sets. Results We found that all of the examined psychosocial expressions have significantly increased during the COVID-19 crisis—mental health symptomatic expressions have increased by about 14%, and support expressions have increased by about 5%, both thematically related to COVID-19. We also observed a steady decline and eventual plateauing in these expressions during the COVID-19 pandemic, which may have been due to habituation or due to supportive policy measures enacted during this period. Our language analyses highlighted that people express concerns that are specific to and contextually related to the COVID-19 crisis. Conclusions We studied the psychosocial effects of the COVID-19 crisis by using social media data from 2020, finding that people’s mental health symptomatic and support expressions significantly increased during the COVID-19 period as compared to similar data from 2019. However, this effect gradually lessened over time, suggesting that people adapted to the circumstances and their “new normal.” Our linguistic analyses revealed that people expressed mental health concerns regarding personal and professional challenges, health care and precautionary measures, and pandemic-related awareness. This study shows the potential to provide insights to mental health care and stakeholders and policy makers in planning and implementing measures to mitigate mental health risks amid the health crisis.« less