skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ChemSims: using simulations and screencasts to help students develop particle-level understanding of equilibrium in an online environment before and during COVID
Equilibrium is a challenging concept for many, largely because developing a deep conceptual understanding of equilibrium requires someone to be able to connect the motions and interactions of particles that cannot be physically observed with macroscopic observations. Particle level chemistry animations and simulations can support student connections of particle motion with macroscopic observations, but for topics such as equilibrium additional visuals such as graphs are typically present which add additional complexity. Helping students make sense of such visuals requires careful scaffolding to draw their attention to important features and help them make connections between representations ( e.g. , particle motion and graphical representations). Further, as students enter our classrooms with varying levels of background understanding, they may require more or less time working with such simulations or animations to develop the desired level of conceptual understanding. This paper describes the development and testing of activities that use the PhET simulation “Reactions and Rates” to introduce the concept of equilibrium as a student preclass activity either in the form of directly using the simulation or guided by an instructor through a screencast. The pre-post analysis of the two most recent implementations of these activities indicates that students show improved understanding of the core ideas underlying equilibrium regardless of instructor, institution, or type of instructional environment (face to face or remote). We also observed that students were more readily able to provide particle level explanations of changes in equilibrium systems as they respond to stresses (such as changes to concentration and temperature) if they have had prior course instruction on collision theory. Lastly, we observed that student answers to explain how an equilibrium will respond to an applied stress more often focus on either initial responses or longer-term stability of concentrations, not on both key aspects.  more » « less
Award ID(s):
1705365 1702592
PAR ID:
10342027
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
23
Issue:
3
ISSN:
1109-4028
Page Range / eLocation ID:
644 to 661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study explored how different formats of instructional visuals affect the accuracy of students' metacognitive judgments. Undergraduates (n = 133) studied a series of five biology texts and made judgments of learning. Students were assigned randomly to study the texts only (text only), study the texts with provided visuals (provided visuals group), study the texts and generate their own visuals (learner‐generated visuals group), or study the texts and observe animations of instructor‐generated visuals (instructor‐generated visuals group). After studying the texts and making judgments of learning, all students completed multiple‐choice comprehension tests on each text. The learner‐generated and instructor‐generated visuals groups exhibited significantly higher relative judgment accuracy than the text only and provided visuals groups, though this effect was relatively small. The learner‐generated visuals group also required more study time and was more likely to report the use of visual cues when making their judgments of learning. 
    more » « less
  2. null (Ed.)
    Abstract Background Engagement with particle-level simulations can help students visualize the motion and interactions of gas particles, thus helping them develop a more scientifically accurate mental model. Such engagement outside of class prior to formal instruction can help meet the needs of students from diverse backgrounds and provide instructors with a common experience upon which to build with further instruction. Yet, even with well-designed scaffolds, students may not attend to the most salient aspects of the simulation. In this case, a screencast where an instructor provides narrated use of the simulation and points students towards the important observations may provide additional benefits. This study, which is part of the larger ChemSims project, investigates the use of simulations and screencasts to support students’ developing understanding of gas properties by examining student learning gains. Results This study indicates that both students manipulating the simulation on their own and those observing a screencast exhibited significant learning gains from pre- to post-assessment. However, students who observed the screencast were more than twice as likely to transition from a macroscopic explanation to a particle-level explanation of gas behavior in answering matched pre- and post-test questions. Eye-tracking studies indicated very similar viewing and usage patterns for both groups of students overall, including when using the simulation to answer follow-up questions. Conclusion Significant learning gains by both groups across all learning objectives indicate that either scaffolded screencast or simulation assignments can be used to support student understanding of gas particle behavior and serve as a first experience upon which to build subsequent instruction. There is some indication that the initial use of the screencast may better help students build correct mental models of gas particle behavior. Further, for this simulation, watching the instructor manipulate the simulation in the screencast allowed students to subsequently use the simulation on their own at a level comparable to those students who had manipulated the simulation on their own throughout the assignment, suggesting that the screencast students were not disadvantaged by not initially manipulating the simulation on their own. 
    more » « less
  3. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  4. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  5. Interactive textbooks generate big data through student reading participation, including animations, question sets, and auto-graded homework. Animations are multi-step, dynamic visuals with text captions. By dividing new content into smaller chunks of information, student engagement is expected to be high, which aligns with tenets of cognitive load theory. Specifically, students’ clicks are recorded and measure usage, completion, and view time per step and for entire animations. Animation usage data from an interactive textbook for a chemical engineering course in Material and Energy Balances accounts for 60,000 animation views across 140+ unique animations. Data collected across five cohorts between 2016 and 2020 used various metrics to capture animation usage including watch and re-watch rates as well as the length of animation views. Variations in view rate and time were examined across content, parsed by book chapter, and five animation characterizations (Concept, Derivation, Figures and Plots, Physical World, and Spreadsheets). Important findings include: 1) Animation views were at or above 100% for all chapters and cohorts, 2) Median view time varies from 22 s (2-step) to 59 s (6-step) - a reasonable attention span for students and cognitive load, 3) Median view time for animations characterized as Derivation was the longest (40 s) compared to Physical World animations, which resulted in the shortest time (20 s). 
    more » « less