This article presents C3SRAM, an in-memory-computing SRAM macro. The macro is an SRAM module with the circuits embedded in bitcells and peripherals to perform hardware acceleration for neural networks with binarized weights and activations. The macro utilizes analog-mixed-signal (AMS) capacitive-coupling computing to evaluate the main computations of binary neural networks, binary-multiply-and-accumulate operations. Without the need to access the stored weights by individual row, the macro asserts all its rows simultaneously and forms an analog voltage at the read bitline node through capacitive voltage division. With one analog-to-digital converter (ADC) per column, the macro realizes fully parallel vector–matrix multiplication in a single cycle. The network type that the macro supports and the computing mechanism it utilizes are determined by the robustness and error tolerance necessary in AMS computing. The C3SRAM macro is prototyped in a 65-nm CMOS. It demonstrates an energy efficiency of 672 TOPS/W and a speed of 1638 GOPS (20.2 TOPS/mm 2 ), achieving 3975 × better energy–delay product than the conventional digital baseline performing the same operation. The macro achieves 98.3% accuracy for MNIST and 85.5% for CIFAR-10, which is among the best in-memory computing works in terms of energy efficiency and inference accuracy tradeoff.
This content will become publicly available on February 20, 2023
DIMC: 2219TOPS/W 2569F2/b Digital In-Memory Computing Macro in 28nm Based on Approximate Arithmetic Hardware
In-memory-computing (IMC) SRAM architecture has gained significant attention as it achieves high energy efficiency for computing a convolutional neural network (CNN) model [1]. Recent works investigated the use of analog-mixed-signal (AMS) hardware for high area and energy efficiency [2], [3]. However, AMS hardware output is well known to be susceptible to process, voltage, and temperature (PVT) variations, limiting the computing precision and ultimately the inference accuracy of a CNN. We reconfirmed, through the simulation of a capacitor-based IMC SRAM macro that computes a 256D binary dot product, that the AMS computing hardware has a significant root-mean-square error (RMSE) of 22.5% across the worst-case voltage, temperature (Fig. 16.1.1 top left) and 3-sigma process variations (Fig. 16.1.1 top right). On the other hand, we can implement an IMC SRAM macro using robust digital logic [4], which can virtually eliminate the variability issue (Fig. 16.1.1 top). However, digital circuits require more devices than AMS counterparts (e.g., 28 transistors for a mirror full adder [FA]). As a result, a recent digital IMC SRAM shows a lower area efficiency of 6368F2/b (22nm, 4b/4b weight/activation) [5] than the AMS counterpart (1170F2/b, 65nm, 1b/1b) [3]. In light of this, we aim to adopt approximate arithmetic hardware to more »
- Award ID(s):
- 1919147
- Publication Date:
- NSF-PAR ID:
- 10342205
- Journal Name:
- 2022 IEEE International Solid- State Circuits Conference (ISSCC)
- Page Range or eLocation-ID:
- 266 to 268
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »
-
RRAM-based in-memory computing (IMC) effectively accelerates deep neural networks (DNNs) and other machine learning algorithms. On the other hand, in the presence of RRAM device variations and lower precision, the mapping of DNNs to RRAM-based IMC suffers from severe accuracy loss. In this work, we propose a novel hybrid IMC architecture that integrates an RRAM-based IMC macro with a digital SRAM macro using a programmable shifter to compensate for the RRAM variations and recover the accuracy. The digital SRAM macro consists of a small SRAM memory array and an array of multiply-and-accumulate (MAC) units. The non-ideal output from the RRAM macro, due to device and circuit non-idealities, is compensated by adding the precise output from the SRAM macro. In addition, the programmable shifter allows for different scales of compensation by shifting the SRAM macro output relative to the RRAM macro output. On the algorithm side, we develop a framework for the training of DNNs to support the hybrid IMC architecture through ensemble learning. The proposed framework performs quantization (weights and activations), pruning, RRAM IMC-aware training, and employs ensemble learning through different compensation scales by utilizing the programmable shifter. Finally, we design a silicon prototype of the proposed hybrid IMC architecturemore »
-
We present a generic and programmable Processing-in-SRAM (PSRAM) accelerator chip design based on an 8T-SRAM array to accommodate a complete set of Boolean logic operations (e.g., NOR/NAND/XOR, both 2- and 3-input), majority, and full adder, for the first time, all in a single cycle. PSRAM provides the programmability required for in-memory computing platforms that could be used for various applications such as parallel vector operation, neural networks, and data encryption. The prototype design is implemented in a SRAM macro with size of 16 kb, demonstrating one of the fastest programmable in-memory computing system to date operating at 1.23 GHz. The 65nm prototype chip achieves system-level peak throughput of 1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V.
-
A bstract A search for a heavy resonance decaying to a top quark and a W boson in the fully hadronic final state is presented. The analysis is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb − 1 recorded by the CMS experiment at the LHC. The search is focused on heavy resonances, where the decay products of each top quark or W boson are expected to be reconstructed as a single, large-radius jet with a distinct substructure. The production of an excited bottom quark, b * , is used as a benchmark when setting limits on the cross section for a heavy resonance decaying to a top quark and a W boson. The hypotheses of b * quarks with left-handed, right-handed, and vector-like chiralities are excluded at 95% confidence level for masses below 2.6, 2.8, and 3.1 TeV, respectively. These are the most stringent limits on the b * quark mass to date, extending the previous best limits by almost a factor of two.