skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of changing sea ice on nearshore wave climate trends along Alaska’s central Beaufort Sea coast
Diminishing sea ice is impacting the wave field across the Arctic region. Recent observation and model-based studies highlight the spatiotemporal influence of sea ice on offshore wave climatologies, but effects within the nearshore region are still poorly described. This study characterizes the wave climate in the central Beaufort Sea coast from 1979 to 2019 by utilizing a wave hindcast model that uses ERA5 winds, waves, and ice concentrations as input. The spectral wave model SWAN is calibrated and validated based on more than 10,000 in situ measurements collected over a 13-year time period across the region, with friction variations and empirical coefficients for newly implemented empirical ice formulations for the open water season. Model results and trends are analyzed over the 41-year time period using the non-parametric Mann-Kendall test, including an estimate of Sen’s slope. The model results show that the reduction of sea ice concentration correlates strongly with increases in average and extreme wave conditions. In particular, the open water season extended by ~96 days over the 41-year time period (~2.4 days/yr), resulting in a five-fold increase of the yearly cumulative wave power. Moreover, the open water season extends later into the year, resulting in relatively open-water conditions during fall storms with high wind speeds. The later freeze-up results in an increase of the annual offshore median wave heights of 1% per year and an increase in the average number of rough wave days (defined as days when maximum wave heights exceed 2.5 m) from 1.5 in 1979 to 13.1 days in 2019. Trends in the nearshore areas deviate from the patterns offshore. Model results indicate a non-breaking depth induced saturation limit for high wave heights in the shallow areas of Foggy Island Bay. Similar patterns are found for yearly cumulative wave power.  more » « less
Award ID(s):
1656026
PAR ID:
10343035
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The cryosphere discussions
ISSN:
1994-0440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Canada Basin (CB) has seen significant sea‐ice loss in recent decades. We use output from the Pan‐Arctic Ice‐Ocean Modeling and Assimilation System to examine the 1979–2023 evolution of seasonal sea‐ice volume (SIV) changes in the CB partitioned into advective and thermodynamic changes. In winter, some years show net convergence into the region that is of comparable magnitude to the SIV change attributed to sea‐ice growth. In summer, melt/ablation dominates the change each year. In both seasons, 44 year trends in seasonal SIV changes are driven primarily by thermodynamic processes. The inferred thermodynamic growth each year is nearly equal to the inferred melt consistent with SIV at the end of the melt season declining more rapidly than SIV at the end of the growth season. Increased melt season atmospheric heating of the ice‐ocean system over 1979–2023, estimated from ERA5 reanalysis, is consistent with the ice‐albedo feedback. In the growth season, net cumulative atmospheric heat release from the ice‐ocean system shows no trend, suggesting increases in inferred thermodynamic ice growth can be attributed to more rapid growth of thinner ice. In each season, cumulative atmospheric heat input exceeds that required for ice melt/growth resulting in a residual that influences ocean heat content (OHC). Seasonal OHC changes, inferred from ocean observations, are equal to approximately one‐third of this residual, although limited ocean observations leave the total heat budget poorly constrained, highlighting a need for more water column observations. 
    more » « less
  2. Abstract Seasonal sea ice impacts Arctic delta morphology by limiting wave and river influences and altering river‐to‐ocean sediment pathways. However, the long‐term effects of sea ice on delta morphology remain poorly known. To address this gap, 1D morphologic and hydrodynamic simulations were set up in Delft3D to study the 1500‐year development of Arctic deltas during the most energetic Arctic seasons: spring break‐up/freshet, summer open‐water, and autumn freeze‐up. The model focused on the deltaic clinoform (i.e., the vertical cross‐sectional view of a delta) and used a floating barge structure to mimic the effects of sea ice on nearshore waters. From the simulations we find that ice‐affected deltas form a compound clinoform morphology, that is, a coupled subaerial and subaqueous delta separated by a subaqueous platform that resembles the shallow platform observed offshore of Arctic deltas. Nearshore sea ice affects river dynamics and promotes sediment bypassing during sea ice break‐up, forming an offshore depocenter and building a subaqueous platform. A second depocenter forms closer to shore during the open‐water season at the subaerial foreset that aids in outbuilding the subaerial delta and assists in developing the compound clinoform morphology. Simulations of increased wave activity and reduced sea‐ice, likely futures under a warming Arctic climate, show that deltas may lose their shallow platform on centennial timescales by (a) sediment infill and/or (b) wave erosion. This study highlights the importance of sea ice on Arctic delta morphology and the potential morphologic transitions these high‐latitude deltas may experience as the Arctic continues to warm. 
    more » « less
  3. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
  4. We quantify changes in break‐up events of landfast ice in the transition from a perennial to a seasonal sea ice cover in the Arctic. A break‐up event is defined as a time when coastal sea ice concentration drops below 95% after a minimum period of 10 days of stable ice conditions. To this end we analyze output diagnostics from the Community Earth System Model (Version 1) – Large Ensemble from 1920 to 2080, focusing on six coastal communities of Alaska, Chukotka, and the Kamtchatka Peninsula: Utqiaġvik, Point Hope, Gambell, Novoye Chaplino, Sireniki, and Pakhachi. Model results generally agree with the satellite record with open water formation along the coastline associated with sustained offshore winds, although the sensitivity of CESM1‐LE is higher than that of observations due to the absence of a landfast ice parameterization in CESM1‐ LE. Specifically, we see a linear relationship between the magnitude of the opening and offshore surface wind stresses integrated over the 10 days prior to the opening event, (p‐value < 0.01). While the break‐up event frequency increases (5.53 × 10−5 events/day/year for Utqiagvik) in the 21st century due to the thin- ning, or weakening, of the landfast ice cover, the total number of winter break‐up events decreases due to a shortening of the winter season (mean of ‐5.3 days/decade). 
    more » « less
  5. Abstract Declining Arctic sea ice over recent decades has been linked to growth in coastal hazards affecting the Alaskan Arctic. In this study, climate model projections of sea ice are utilized in the simulation of an extratropical cyclone to quantify how future changes in seasonal ice coverage could affect coastal waves caused by this extreme event. All future scenarios and decades show an increase in coastal wave heights, demonstrating how an extended season of open water in the Chukchi and Beaufort Seas could expose Alaskan Arctic shorelines to wave hazards resulting from such a storm event for an additional winter month by 2050 and up to three additional months by 2070 depending on climate pathway. Additionally, for the Beaufort coastal region, future scenarios agree that a coastal wave saturation limit is reached during the sea ice minimum, where historically sea ice would provide a degree of protection throughout the year. 
    more » « less