skip to main content


Title: Evaluation of commercially-available conductive filaments for 3D printing flexible circuits on paper
Three commercially-available conductive filaments were evaluated for 3D printing flexible circuits on paper. While all three filaments were printed successfully, the resulting conductive traces were found to have significantly different impedances when characterized by electrochemical impedance spectroscopy. Using a graphite-doped polylactic acid filament, the flexibility of paper-based conductive traces was evaluated, methods of integrating common electrical and electronic components with the conductive traces were demonstrated, and the resistive heating of the traces was characterized. The ability to 3D print conductive traces on paper using commercially available materials opens many opportunities for rapid prototyping of flexible electronics and for integrating electronic circuits with paper-based microfluidic devices.  more » « less
Award ID(s):
1709740
NSF-PAR ID:
10343141
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
PeerJ Materials Science
Volume:
4
Page Range / eLocation ID:
e21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Manufacturing of printed electronics relies on the deposition of conductive liquid inks, typically onto polymeric or paper substrates. Among available conductive fillers for use in electronic inks, carbon nanotubes (CNTs) have high conductivity, low density, processability at low temperatures, and intrinsic mechanical flexibility. However, the electrical conductivity of printed CNT structures has been limited by CNT quality and concentration, and by the need for nonconductive modifiers to make the ink stable and extrudable. This study introduces a polymer‐free, printable aqueous CNT ink, and, via an ambient direct‐write printing process, presents the relationships between printing resolution, ink rheology, and ink‐substrate interactions. A model is constructed to predict printed feature sizes on impermeable substrates based on Wenzel wetting. Printed lines have conductivity up to 10 000 S m−1. The lines are flexible, with <5% change in DC resistance after 1000 bending cycles, and <3% change in DC resistance with a bending radius down to 1 mm. Demonstrations focus on i) conformality, via printing CNTs onto stickers that can be applied to curved surfaces, ii) interactivity using a CNT‐based button printed onto folded paper structure, and iii) capacitive sensing of liquid wicking into the substrate itself. Facile integration of surface mount components on printed circuits is enabled by the intrinsic adhesion of the wet ink.

     
    more » « less
  2. Abstract

    Recyclable and biodegradable microelectronics, i.e., “green” electronics, are emerging as a viable solution to the global challenge of electronic waste. Specifically, flexible circuit boards represent a prime target for materials development and increasing the utility of green electronics in biomedical applications. Circuit board substrates and packaging are good dielectrics, mechanically and thermally robust, and are compatible with microfabrication processes. Poly(octamethylene maleate (anhydride) citrate) (POMaC) – a citric acid-based elastomer with tunable degradation and mechanical properties – presents a promising alternative for circuit board substrates and packaging. Here, we report the characterization of Elastomeric Circuit Boards (ECBs). Synthesis and processing conditions were optimized to achieve desired degradation and mechanical properties for production of stretchable circuits. ECB traces were characterized and exhibited sheet resistance of 0.599 Ω cm−2, crosstalk distance of <0.6 mm, and exhibited stable 0% strain resistances after 1000 strain cycles to 20%. Fabrication of single layer and encapsulated ECBs was demonstrated.

     
    more » « less
  3. Abstract

    This article reports a synthesis that yields 4.4 g of Cu nanowires in 1 h, and a method to coat 22 g of Cu nanowires with Ag within 1 h. Due to the large diameters of Cu nanowires (≈240 nm) produced by this synthesis, a Ag:Cu mol ratio of 0.04 is sufficient to coat the nanowires with ≈3 nm of Ag, and thereby protect them from oxidation. This multigram Cu‐Ag core–shell nanowire production process enabled the production of the first nanowire‐based conductive polymer composite filament for 3D printing. The 3D printing filament has a resistivity of 0.002 Ω cm, >100 times more conductive than commercially available graphene‐based 3D printing filaments. The conductivity of composites containing 5 vol% of 50‐µm‐long Cu‐Ag nanowires is greater than composites containing 22 vol% of 20‐µm‐long Ag nanowires or 10‐µm‐long flakes, indicating that high‐aspect ratio Cu‐Ag nanowires enable the production of highly conductive composites at relatively low volume fractions. The highly conductive filament can support current densities between 2.5 and 4.5 × 105A m−2depending on the surface‐to‐volume ratio of the printed trace, and was used to 3D print a conductive coil for wireless power transfer.

     
    more » « less
  4. null (Ed.)
    This paper proposes a new way of designing and fabricating conformal flexible electronics on free-form surfaces, which can generate woven flexible electronics designs conforming to free-form 3D shapes with 2D printed electronic circuits. Utilizing our recently proposed foliation-based 3D weaving techniques, we can reap unprecedented advantages in conventional 2D electronic printing. The method is based on the foliation theory in differential geometry, which divides a surface into parallel leaves. Given a surface with circuit design, we first calculate a graph-value harmonic map and then create two sets of harmonic foliations perpendicular to each other. As the circuits are processed as the texture on the surface, they are separated and attached to each leaf. The warp and weft threads are then created and manually woven to reconstruct the surface and reconnect the circuits. Notably, The circuits are printed in 2D, which uniquely differentiates the proposed method from others. Compared with costly conformal 3D electronic printing methods requiring 5-axis CNC machines, our method is more reliable, more efficient, and economical. Moreover, the Harmonic foliation theory assures smoothness and orthogonality between every pair of woven yarns, which guarantees the precision of the flexible electronics woven on the surface. The proposed method provides an alternative solution to the design and physical realization of surface electronic textiles for various applications, including wearable electronics, sheet metal craft, architectural designs, and smart woven-composite parts with conformal sensors in the automotive and aerospace industry. The performance of the proposed method is depicted using two examples. 
    more » « less
  5. Commercially available fused deposition modeling (FDM) printers have yet to bridge the gap between printing soft, flexible materials and printing hard, rigid materials. This work presents a custom printer solution, based on open-source hardware and software, which allows a user to print both flexible and rigid polymer materials. The materials printed include NinjaFlex, SemiFlex, acrylonitrile-butadiene-styrene (ABS), Nylon, and Polycarbonate. In order to print rigid materials, a custom, high-temperature heated bed was designed to act as a print stage. Additionally, high temperature extruders were included in the design to accommodate the printing requirements of both flexible and rigid filaments. Across 25 equally spaced points on the print plate, the maximum temperature difference between any two points on the heated bed was found to be ∼9°C for a target temperature of 170°C. With a uniform temperature profile across the plate, functional prints were achieved in each material. The print quality varied, dependent on material; however, the standard deviation of layer thicknesses and size measurements of the parts were comparable to those produced on a Zortrax M200 printer. After calibration and further process development, the custom printer will be integrated into the NEXUS system — a multiscale additive manufacturing instrument with integrated 3D printing and robotic assembly (NSF Award #1828355). 
    more » « less