skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering
A new type of high-entropy alloy, a nitride-based (AlCrTiZrMo)N/ZrO2 nano-multilayered film, was designed to investigate the effect of ZrO2 layer thickness on the microstructure, mechanical properties, and thermal stability. The results show that when the thickness of the ZrO2 layer is less than 0.6 nm, it can be transformed into cubic-phase growth under the template effect of the (AlCrTiZrMo)N layer, resulting in an increased hardness. The (AlCrTiZrMo)N/ZrO2 film with a ZrO2 layer thickness of 0.6 nm has the highest hardness and elastic modulus of 35.1 GPa and 376.4 GPa, respectively. As the thickness of the ZrO2 layer further increases, ZrO2 cannot maintain the cubic structure, and the epitaxial growth interface is destroyed, resulting in a decrease in hardness. High-temperature annealing treatments indicate that the mechanical properties of the film decrease slightly after annealing at less than 900 °C for 30 min, while the mechanical properties decrease significantly after annealing for 30 min at 1000–1100 °C. The hardness and elastic modulus after annealing at 900 °C are still 24.5 GPa and 262.3 GPa, showing excellent thermal stability. This conclusion verifies the “template” effect of the nano-multilayered film, which improves the hardness and thermal stability of the high-entropy alloy.  more » « less
Award ID(s):
1809640
PAR ID:
10343657
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
12
Issue:
2
ISSN:
2073-4352
Page Range / eLocation ID:
232
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A nanostructured oxide‐dispersion‐strengthened (ODS) CoCrFeMnNi high‐entropy alloy (HEA) is synthesized by a powder metallurgy process. The thermal stability, including the grain size and crystal structure of the HEA matrix and oxide dispersions, is carefully investigated by X‐ray diffraction (XRD) and electron microscopy characterizations after annealing at 900 °C. The limited grain growth may be attributed to Zener pinning of yttria dispersions that impede the grain boundary mobility and diffusivity. The high hardness is caused by both the fine grain size and yttria dispersions, which are also retained after annealing at 900 °C. Herein, it is implied that the combination of ODS and HEA concepts may provide a new design strategy for the development of thermally stable nanostructured alloys for extreme environments. 
    more » « less
  2. A unique approach was used to synthesize the high entropy alloy MoNbTaVW via reduction of metal-oxide precursors in a microwave plasma. The metal-oxides underwent ball milling and consolidation before plasma annealing at 1800 °C for 1 h with hydrogen as feedgas. X-ray diffraction, scanning electron microscopy/energy dispersive x-ray analysis, and Vickers hardness testing reveal characteristics of the high-entropy alloy. This includes a predominantly single-phase body-centered cubic structure, homogeneous distribution of all five metals, and 6.8 ± 0.9 GPa hardness, comparable with other reports for the same five-metal high entropy alloy configuration. Localized microwave plasma particle sintering is evident from the microstructure. These results highlight the promising potential of microwave plasma as a fast, economical, and flexible processing tool for high entropy alloys. 
    more » « less
  3. At ambient conditions, the high-entropy alloy superconductor R⁢e0.6⁢(NbTiZrHf)0.4 exhibits exceptional mechanical properties among high-entropy alloys, with its hexagonal phase achieving nanoindentation hardness of 18.5 GPa. We report on a unique pressure-induced structural transformation from a hexagonal phase to a body-centered cubic (BCC) phase, revealed by synchrotron x-ray diffraction measurements up to 70 GPa. This first-order transition, accompanied by a 6.1% volume collapse, occurs at 44 GPa and results in a BCC structure with random site occupancy by the five constituent elements, which is remarkably retained upon decompression to ambient conditions. The transformation proceeds via a martensiticlike, diffusionless mechanism without elemental segregation, enabled by pressure-induced electronic redistribution and atomic-scale disorder. These findings demonstrate a rare case of metastable phase retention in a chemically complex alloy and offer new insights into structure-stability relationships under pressure. 
    more » « less
  4. A series of (AlCrTiZrV)-Six-N films with different silicon contents were deposited on monocrystalline silicon substrates by direct-current (DC) magnetron sputtering. The films were characterized by the X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and nano-indentation techniques. The effects of the silicon content on the microstructures and mechanical properties of the films were investigated. The experimental results show that the (AlCrTiZrV)N films grow in columnar grains and present a (200) preferential growth orientation. The addition of the silicon element leads to the disappearance of the (200) peak, and the grain refinement of the (AlCrTiZrV)-Six-N films. Meanwhile, the reticular amorphous phase is formed, thus developing the nanocomposite structure with the nanocrystalline structures encapsulated by the amorphous phase. With the increase of the silicon content, the mechanical properties first increase and then decrease. The maximal hardness and modulus of the film reach 34.3 GPa and 301.5 GPa, respectively, with the silicon content (x) of 8% (volume percent). The strengthening effect of the (AlCrTiZrV)-Six-N film can be mainly attributed to the formation of the nanocomposite structure. 
    more » « less
  5. Abstract Mg4(TiZnSn)3, a rare-earth-free Mg-based multi-principal element alloy, was synthesized via high-energy ball milling and cold compaction. Potentiodynamic polarization in 0.1 M NaCl revealed spontaneous passivation with a corrosion current density of 8.96 ± 0.83 µA/cm2and a nobler than Mg corrosion potential of -1058.35 ± 15.91 mVSCE. X-ray photoelectron spectroscopy confirmed the formation of a mixed oxide film containing ZnO, SnO2, and TiO2, contributing to the observed passivity. The alloy also exhibited improved mechanical performance, with a hardness of 5.06 ± 0.41 GPa and Young’s modulus of 109.24 ± 10 GPa. These results demonstrate that tailored multi-element alloying and powder metallurgy can synergistically enhance both corrosion resistance and mechanical properties in Mg alloys. 
    more » « less