skip to main content


Title: Accelerating Adoption of Disruptive Technologies: Impact of COVID-19 on Intentions to Use On-Demand Autonomous Vehicle Mobility Services

One of the most notable global transportation trends is the accelerated pace of development in vehicle automation technologies. Uncertainty surrounds the future of automated mobility as there is no clear consensus on potential adoption patterns, ownership versus shared use status, and travel impacts. Adding to this uncertainty is the impact of the COVID-19 pandemic which has triggered profound changes in mobility behaviors as well as accelerated the adoption of new technologies at an unprecedented rate. Accordingly, this study examines the impact of the COVID-19 pandemic on people’s intention to adopt the emerging technology of autonomous vehicles (AVs). Using data from a survey disseminated in June 2020 to 700 respondents in the United States, a difference-in-difference regression is performed to analyze the shift in willingness to use AVs as part of an on-demand mobility service before and during the pandemic. The results reveal that the COVID-19 pandemic had a positive and highly significant impact on the intention to use AVs. This shift is present regardless of tech-savviness, gender, or urban/rural household location. Results indicate that individuals who are younger, politically left-leaning, and frequent users of on-demand modes of travel are expected to be more likely to use AVs once offered. Understanding the systematic segment and attribute variation determining the increase in consideration of AVs is important for policy making, as these effects provide a guide to predicting adoption of AVs—once available—and to identify segments of the population likely to be more resistant to adopting AVs.

 
more » « less
Award ID(s):
1847537
NSF-PAR ID:
10492909
Author(s) / Creator(s):
; ;
Publisher / Repository:
Transportation Research Board
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
ISSN:
0361-1981
Page Range / eLocation ID:
036119812210992
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper. 
    more » « less
  2. Background

    Stay-at-home orders were one of the controversial interventions to curb the spread of COVID-19 in the United States. The stay-at-home orders, implemented in 51 states and territories between March 7 and June 30, 2020, impacted the lives of individuals and communities and accelerated the heavy usage of web-based social networking sites. Twitter sentiment analysis can provide valuable insight into public health emergency response measures and allow for better formulation and timing of future public health measures to be released in response to future public health emergencies.

    Objective

    This study evaluated how stay-at-home orders affect Twitter sentiment in the United States. Furthermore, this study aimed to understand the feedback on stay-at-home orders from groups with different circumstances and backgrounds. In addition, we particularly focused on vulnerable groups, including older people groups with underlying medical conditions, small and medium enterprises, and low-income groups.

    Methods

    We constructed a multiperiod difference-in-differences regression model based on the Twitter sentiment geographical index quantified from 7.4 billion geo-tagged tweets data to analyze the dynamics of sentiment feedback on stay-at-home orders across the United States. In addition, we used moderated effects analysis to assess differential feedback from vulnerable groups.

    Results

    We combed through the implementation of stay-at-home orders, Twitter sentiment geographical index, and the number of confirmed cases and deaths in 51 US states and territories. We identified trend changes in public sentiment before and after the stay-at-home orders. Regression results showed that stay-at-home orders generated a positive response, contributing to a recovery in Twitter sentiment. However, vulnerable groups faced greater shocks and hardships during the COVID-19 pandemic. In addition, economic and demographic characteristics had a significant moderating effect.

    Conclusions

    This study showed a clear positive shift in public opinion about COVID-19, with this positive impact occurring primarily after stay-at-home orders. However, this positive sentiment is time-limited, with 14 days later allowing people to be more influenced by the status quo and trends, so feedback on the stay-at-home orders is no longer positively significant. In particular, negative sentiment is more likely to be generated in states with a large proportion of vulnerable groups, and the policy plays a limited role. The pandemic hit older people, those with underlying diseases, and small and medium enterprises directly but hurt states with cross-cutting economic situations and more complex demographics over time. Based on large-scale Twitter data, this sociological perspective allows us to monitor the evolution of public opinion more directly, assess the impact of social events on public opinion, and understand the heterogeneity in the face of pandemic shocks.

     
    more » « less
  3. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less
  4. Abstract Background We previously developed and validated a predictive model to help clinicians identify hospitalized adults with coronavirus disease 2019 (COVID-19) who may be ready for discharge given their low risk of adverse events. Whether this algorithm can prompt more timely discharge for stable patients in practice is unknown. Objectives The aim of the study is to estimate the effect of displaying risk scores on length of stay (LOS). Methods We integrated model output into the electronic health record (EHR) at four hospitals in one health system by displaying a green/orange/red score indicating low/moderate/high-risk in a patient list column and a larger COVID-19 summary report visible for each patient. Display of the score was pseudo-randomized 1:1 into intervention and control arms using a patient identifier passed to the model execution code. Intervention effect was assessed by comparing LOS between intervention and control groups. Adverse safety outcomes of death, hospice, and re-presentation were tested separately and as a composite indicator. We tracked adoption and sustained use through daily counts of score displays. Results Enrolling 1,010 patients from May 15, 2020 to December 7, 2020, the trial found no detectable difference in LOS. The intervention had no impact on safety indicators of death, hospice or re-presentation after discharge. The scores were displayed consistently throughout the study period but the study lacks a causally linked process measure of provider actions based on the score. Secondary analysis revealed complex dynamics in LOS temporally, by primary symptom, and hospital location. Conclusion An AI-based COVID-19 risk score displayed passively to clinicians during routine care of hospitalized adults with COVID-19 was safe but had no detectable impact on LOS. Health technology challenges such as insufficient adoption, nonuniform use, and provider trust compounded with temporal factors of the COVID-19 pandemic may have contributed to the null result. Trial registration ClinicalTrials.gov identifier: NCT04570488. 
    more » « less
  5. Abstract

    During the COVID‐19 pandemic, it is important for people to engage in prosocial behaviours to support one another. The aim of this research is to answer a key question: in a social crisis, what motivates Americans to help others? Guided by research on appraisal theories and ecosystem theory, we examined the role of compassionate goals and prosocial emotions in promoting prosocial behaviours towards either out‐group or in‐group members. Study 1 (N = 943) was conducted in February 2020, before the widespread transmission of COVID‐19 began in the United States. Results show that people with high compassionate goals are more likely to experience sympathy, which in turn makes them more willing to help people suffering from COVID‐19 in China. Study 2 (N = 1,009) was conducted with a nationally representative sample after COVID‐19 became more prevalent in the United States. Although people with high compassionate goals still experience more sympathy and solidarity, sympathy does not predict donation intention. Instead, solidarity mediates the relationship between compassionate goals and donation intention. Please refer to the Supplementary Material section to find this article'sCommunity and Social ImpactStatement.

     
    more » « less