COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit.
more »
« less
Accelerating Adoption of Disruptive Technologies: Impact of COVID-19 on Intentions to Use On-Demand Autonomous Vehicle Mobility Services
One of the most notable global transportation trends is the accelerated pace of development in vehicle automation technologies. Uncertainty surrounds the future of automated mobility as there is no clear consensus on potential adoption patterns, ownership versus shared use status, and travel impacts. Adding to this uncertainty is the impact of the COVID-19 pandemic which has triggered profound changes in mobility behaviors as well as accelerated the adoption of new technologies at an unprecedented rate. Accordingly, this study examines the impact of the COVID-19 pandemic on people’s intention to adopt the emerging technology of autonomous vehicles (AVs). Using data from a survey disseminated in June 2020 to 700 respondents in the United States, a difference-in-difference regression is performed to analyze the shift in willingness to use AVs as part of an on-demand mobility service before and during the pandemic. The results reveal that the COVID-19 pandemic had a positive and highly significant impact on the intention to use AVs. This shift is present regardless of tech-savviness, gender, or urban/rural household location. Results indicate that individuals who are younger, politically left-leaning, and frequent users of on-demand modes of travel are expected to be more likely to use AVs once offered. Understanding the systematic segment and attribute variation determining the increase in consideration of AVs is important for policy making, as these effects provide a guide to predicting adoption of AVs—once available—and to identify segments of the population likely to be more resistant to adopting AVs.
more »
« less
- Award ID(s):
- 1847537
- PAR ID:
- 10492909
- Publisher / Repository:
- Transportation Research Board
- Date Published:
- Journal Name:
- Transportation Research Record: Journal of the Transportation Research Board
- ISSN:
- 0361-1981
- Page Range / eLocation ID:
- 036119812210992
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail to specify ’where’ these changes occur and lack a detailed understanding of the relationship between SES and mobility changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different communities. Our research contributes to the literature by employing network science to examine COVID-19’s impact on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed understanding of how social and economic factors influence movement patterns and urban connectivity, highlighting disparities in mobility and access across different socioeconomic groups. The results identify areas functioning as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities. Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs during the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicating a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.more » « less
-
Abstract Deriving effective mobility control measures is critical for the control of COVID-19 spreading. In response to the COVID-19 pandemic, many countries and regions implemented travel restrictions and quarantines to reduce human mobility and thus reduce virus transmission. But since human mobility decreased heterogeneously, we lack empirical evidence of the extent to which the reductions in mobility alter the way people from different regions of cities are connected, and what containment policies could complement mobility reductions to conquer the pandemic. Here, we examined individual movements in 21 of the most affected counties in the United States, showing that mobility reduction leads to a segregated place network and alters its relationship with pandemic spread. Our findings suggest localized area-specific policies, such as geo-fencing, as viable alternatives to city-wide lockdown for conquering the pandemic after mobility was reduced.more » « less
-
The market for on-demand food delivery (ODFD) has increased considerably, especially during the COVID-19 pandemic. It is crucial for transportation and environmental agencies to understand how ODFD has reshaped the travel patterns of people, affecting vehicle-miles traveled (VMT) as well as pollutant emissions in the transportation system. However, the lack of public data from food delivery companies makes it challenging to quantify the impact of on-demand delivery on the real-world transportation network. In this research, we propose a comprehensive framework to quantify the VMT and emissions incurred by ODFD with three main components: (i) a daily activity generation tool, Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns, to create a simulation scenario of ODFD behaviors based on a real-world roadway network and population demographics in the City of Riverside, California; (ii) an efficient order dispatching and routing algorithm, adaptive large neighborhood search, to obtain a high quality order dispatching and routing plan; (iii) an emission evaluation model, emission factor (EMFAC), to evaluate pollutant emissions from all dining-related trips. Both short-term and long-term impacts of the COVID-19 pandemic are evaluated. Experimental results show that ODFD has great potential to reduce the dining-related VMT and emissions. The total dining-related VMT in the during-pandemic case decreased by 38% and in the after-pandemic case reduced by 6% to 9%, and the corresponding environmental impacts were reduced accordingly. Meanwhile, emissions reduced significantly with more electric vehicles involved in food delivery. With 100% electric delivery fleet, the ODFD service can save 14% to 22% of emissions after the COVID-19 pandemic.more » « less
-
null (Ed.)Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning.more » « less
An official website of the United States government

