skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication
Award ID(s):
1922895
PAR ID:
10345820
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Virology
Volume:
563
Issue:
C
ISSN:
0042-6822
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We recently reported that p28, one of the two turnip crinkle virus (TCV) replication proteins, trans-complemented a defective TCV lacking p28, yet repressed the replication of another TCV replicon encoding wildtype p28 (Zhang et al., 2017). Here we show that p88, the TCV-encoded RNA-dependent RNA polymerase, likewise trans-complemented a p88-defective TCV replicon, but repressed one encoding wild-type p88. Surprisingly, lowering p88 protein levels enhanced trans-complementation, but weakened repression. Repression by p88 was not simply due to protein over-expression, as deletion mutants missing 127 or 224 N-terminal amino acids accumulated to higher levels but were poor repressors. Finally, both trans-complementation and repression by p88 were accompanied by preferential accumulation of subgenomic RNA2, and a novel class of small TCV RNAs. Our results suggest that repression of TCV replication by p88 may manifest a viral mechanism that regulates the ratio of genomic and subgenomic RNAs based on p88 abundance. 
    more » « less
  2. We recently reported that p28, one of the two turnip crinkle virus (TCV) replication proteins, trans-complemented a defective TCV lacking p28, yet repressed the replication of another TCV replicon encoding wildtype p28 (Zhang et al., 2017). Here we show that p88, the TCV-encoded RNA-dependent RNA polymerase, likewise trans-complemented a p88-defective TCV replicon, but repressed one encoding wild-type p88. Surprisingly, lowering p88 protein levels enhanced trans-complementation, but weakened repression. Repression by p88 was not simply due to protein over-expression, as deletion mutants missing 127 or 224 N-terminal amino acids accumulated to higher levels but were poor repressors. Finally, both trans-complementation and repression by p88 were accompanied by preferential accumulation of subgenomic RNA2, and a novel class of small TCV RNAs. Our results suggest that repression of TCV replication by p88 may manifest a viral mechanism that regulates the ratio of genomic and subgenomic RNAs based on p88 abundance. 
    more » « less
  3. Simon, Anne E. (Ed.)
    ABSTRACT Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive-strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5′-to-3′ direction until being stalled by well-defined RNA structures. Here, we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome and hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (−) strand forms of ttsgR were produced in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins p28 and p88 were provided in trans . Consistent with its replicational origin, ttsgR accumulation required a 5′ terminal carmovirus consensus sequence (CCS), a sequence motif shared by genomic and subgenomic RNAs of many viruses phylogenetically related to TCV. More importantly, introducing a new CCS motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Finally, abolishing ttsgR by mutating its 5′ CCS gave rise to a TCV mutant that failed to compete with wild-type TCV in Arabidopsis . Collectively, our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production. IMPORTANCE Many positive-strand (+) RNA viruses produce long noncoding RNAs (lncRNAs) during the process of cellular infections and mobilize these lncRNAs to counteract antiviral defenses, as well as coordinate the translation of viral proteins. Most viral lncRNAs arise from 5′-to-3′ degradation of longer viral RNAs being stalled at stable secondary structures. Here, we report a viral lncRNA that is produced by the replication machinery of turnip crinkle virus (TCV). This lncRNA, designated ttsgR, shares the terminal characteristics with TCV genomic and subgenomic RNAs and overaccumulates in the presence of moderately overexpressed TCV RNA-dependent RNA polymerase (RdRp). Furthermore, templates that are of similar sizes as ttsgR are readily replicated by TCV replication proteins (p28 and RdRp) provided from nonviral sources. In summary, this study establishes an approach for uncovering low abundance viral lncRNAs, and characterizes a replicating TCV lncRNA. Similar investigations on human-pathogenic (+) RNA viruses could yield novel therapeutic targets. 
    more » « less