skip to main content


Title: Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication
Award ID(s):
1922895
NSF-PAR ID:
10345820
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Virology
Volume:
563
Issue:
C
ISSN:
0042-6822
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We recently reported that p28, one of the two turnip crinkle virus (TCV) replication proteins, trans-complemented a defective TCV lacking p28, yet repressed the replication of another TCV replicon encoding wildtype p28 (Zhang et al., 2017). Here we show that p88, the TCV-encoded RNA-dependent RNA polymerase, likewise trans-complemented a p88-defective TCV replicon, but repressed one encoding wild-type p88. Surprisingly, lowering p88 protein levels enhanced trans-complementation, but weakened repression. Repression by p88 was not simply due to protein over-expression, as deletion mutants missing 127 or 224 N-terminal amino acids accumulated to higher levels but were poor repressors. Finally, both trans-complementation and repression by p88 were accompanied by preferential accumulation of subgenomic RNA2, and a novel class of small TCV RNAs. Our results suggest that repression of TCV replication by p88 may manifest a viral mechanism that regulates the ratio of genomic and subgenomic RNAs based on p88 abundance. 
    more » « less
  2. We recently reported that p28, one of the two turnip crinkle virus (TCV) replication proteins, trans-complemented a defective TCV lacking p28, yet repressed the replication of another TCV replicon encoding wildtype p28 (Zhang et al., 2017). Here we show that p88, the TCV-encoded RNA-dependent RNA polymerase, likewise trans-complemented a p88-defective TCV replicon, but repressed one encoding wild-type p88. Surprisingly, lowering p88 protein levels enhanced trans-complementation, but weakened repression. Repression by p88 was not simply due to protein over-expression, as deletion mutants missing 127 or 224 N-terminal amino acids accumulated to higher levels but were poor repressors. Finally, both trans-complementation and repression by p88 were accompanied by preferential accumulation of subgenomic RNA2, and a novel class of small TCV RNAs. Our results suggest that repression of TCV replication by p88 may manifest a viral mechanism that regulates the ratio of genomic and subgenomic RNAs based on p88 abundance. 
    more » « less
  3. Pagán, Israel (Ed.)

    Viruses with single-stranded, positive-sense (+) RNA genomes incur high numbers of errors during replication, thereby creating diversified genome populations from which new, better adapted viral variants can emerge. However, a definitive error rate is known for a relatively few (+) RNA plant viruses, due to challenges to account for perturbations caused by natural selection and/or experimental set-ups. To address these challenges, we developed a new approach that exclusively profiled errors in the (-)-strand replication intermediates of turnip crinkle virus (TCV), in singly infected cells. A series of controls and safeguards were devised to ensure errors inherent to the experimental process were accounted for. This approach permitted the estimation of a TCV error rate of 8.47 X 10−5substitution per nucleotide site per cell infection. Importantly, the characteristic error distribution pattern among the 50 copies of 2,363-base-pair cDNA fragments predicted that nearly all TCV (-) strands were products of one replication cycle per cell. Furthermore, some of the errors probably elevated error frequencies by lowering the fidelity of TCV RNA-dependent RNA polymerase, and/or permitting occasional re-replication of progeny genomes. In summary, by profiling errors in TCV (-)-strand intermediates incurred during replication in single cells, this study provided strong support for a stamping machine mode of replication employed by a (+) RNA virus.

     
    more » « less