skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moisture Estimation in Woodchips Using IIoT Wi-Fi and Machine Learning Techniques
For the pulping process in a pulp & paper plant that uses woodchips as raw material, the moisture content (MC) of the woodchips is a major process disturbance that affects product quality and consumption of energy, water, and chemicals. Existing woodchip MC sensing technologies have not been widely adopted by the industry due to unreliable performance and/or high maintenance requirements that can hardly be met in a manufacturing environment. To address these limitations, we propose a non-destructive, economic, and robust woodchip MC sensing approach utilizing channel state information (CSI) from industrial Internet-of-Things (IIoT) based Wi-Fi. While these IIoT devices are small, low-cost, and rugged to stand for harsh environment, they do have their limitations such as the raw CSI data are often very noisy and sensitive to woodchip packing. Thus, direct application of machine learning (ML) algorithms leads to poor performance. To address this, statistics pattern analysis (SPA) is utilized to extract physically and statistically meaningful features from the raw CSI data, which are sensitive to woodchip MC but not to packing. The SPA features are then used for developing multiclass classification models as well as regression models using various linear and nonlinear ML techniques to provide potential solutions to woodchip MC estimation for the pulp and paper industry.  more » « less
Award ID(s):
1805950
PAR ID:
10346614
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computer aided chemical engineering
Volume:
9
ISSN:
2543-1331
Page Range / eLocation ID:
1657-1662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For the pulping process in a pulp & paper plant that uses wood as a raw material, it is important to have real-time knowledge about the moisture content of the woodchips so that the process can be optimized and/or controlled correspondingly to achieve satisfactory product quality while minimizing the consumption of energy and chemicals. Both destructive and non-destructive methods have been developed for estimating moisture content in woodchips, but these methods are often lab-based that cannot be implemented online, or too fragile to stand the harsh manufacturing environment. To address these limitations, we propose a non-destructive and economic approach based on 5 GHz Wi-Fi and use channel state information (CSI) to estimate the moisture content in woodchips. In addition, we propose to use statistics pattern analysis (SPA) to extract features from raw CSI data of amplitude and phase difference. The extracted features are then used for classification model building using linear discriminant analysis (LDA) and subspace discriminant (SD) classification. The woodchip moisture classification results are validated using the oven drying method. 
    more » « less
  2. Abstract This review paper examines the application and challenges of machine learning (ML) in intelligent welding processes within the automotive industry, focusing on resistance spot welding (RSW) and laser welding. RSW is predominant in body-in-white assembly, while laser welding is critical for electric vehicle battery packs due to its precision and compatibility with dissimilar materials. The paper categorizes ML applications into three key areas: sensing, in-process decision-making, and post-process optimization. It reviews supervised learning models for defect detection and weld quality prediction, unsupervised learning for feature extraction and data clustering, and emerging generalizable ML approaches like transfer learning and federated learning that enhance adaptability across different manufacturing conditions. Additionally, the paper highlights the limitations of current ML models, particularly regarding generalizability when moving from lab environments to real-world production, and discusses the importance of adaptive learning techniques to address dynamically changing conditions. Case studies like virtual sensing, defect detection in RSW, and optimization in laser welding illustrate practical applications. The paper concludes by identifying future research directions to improve ML adaptability and robustness in high-variability manufacturing environments, aiming to bridge the gap between experimental ML models and real-world implementation in automotive welding. 
    more » « less
  3. Early fault detection in rolling element bearings is pivotal for the effective predictive maintenance of rotating machinery. Deep Learning (DL) methods have been widely studied for vibration-based bearing fault diagnostics largely because of their capability to automatically extract fault-related features from raw or processed vibration data. Although most DL models in the current literature can provide fairly accurate classification outputs, the typical diagnostic procedure is performed in an offline environment utilizing powerful computers. This centralized approach can lead to unacceptable delays in safety-critical applications and can prohibit cost-sensitive wireless data collection. Meanwhile, very few studies have reported on deploying DL models on microprocessor-based Industrial Internet of Things (IIoT) devices, where edge computing can give users a real-time evaluation of bearing health without requiring expensive computational infrastructure. This paper demonstrates an IIoT deployment of a physics-informed DL model inside a commercially available wireless vibration sensor for online health classification. The diagnostic model here is developed and trained offline, and the trained model is then deployed inside the embedded system for online prediction. We demonstrate the model’s online diagnostic performance by imitating bearing vibration signals on a vibration shaker and by performing edge computing on the embedded system mounted on the shaker. 
    more » « less
  4. null (Ed.)
    Industrial Internet of Things (IIoT) systems aim to interconnect a large number of heterogeneous industrial sensing and actuation devices through both wired and wireless communication technologies and further connect them to the Internet to achieve ubiquitous sensing, computing and control services [1]. As a representative IIoT technology, 6TiSCH [2] targets at gluing together the 802.15.4e data link layer (offering industrial performance in terms of timing, reliability and power consumption) and an IP-enabled upper layer stack to achieve both deterministic network performance and seamless integration with Internet services. In recent years, 6TiSCH has been receiving increasing attentions from both industry and academia. We have witnessed its wide deployment in many industrial domains, including advanced manufacturing, industrial process control, smart grids, and healthcare. 
    more » « less
  5. The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring. 
    more » « less