skip to main content


Title: Moisture Estimation in Woodchips Using IIoT Wi-Fi and Machine Learning Techniques
For the pulping process in a pulp & paper plant that uses woodchips as raw material, the moisture content (MC) of the woodchips is a major process disturbance that affects product quality and consumption of energy, water, and chemicals. Existing woodchip MC sensing technologies have not been widely adopted by the industry due to unreliable performance and/or high maintenance requirements that can hardly be met in a manufacturing environment. To address these limitations, we propose a non-destructive, economic, and robust woodchip MC sensing approach utilizing channel state information (CSI) from industrial Internet-of-Things (IIoT) based Wi-Fi. While these IIoT devices are small, low-cost, and rugged to stand for harsh environment, they do have their limitations such as the raw CSI data are often very noisy and sensitive to woodchip packing. Thus, direct application of machine learning (ML) algorithms leads to poor performance. To address this, statistics pattern analysis (SPA) is utilized to extract physically and statistically meaningful features from the raw CSI data, which are sensitive to woodchip MC but not to packing. The SPA features are then used for developing multiclass classification models as well as regression models using various linear and nonlinear ML techniques to provide potential solutions to woodchip MC estimation for the pulp and paper industry.  more » « less
Award ID(s):
1805950
NSF-PAR ID:
10346614
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computer aided chemical engineering
Volume:
9
ISSN:
2543-1331
Page Range / eLocation ID:
1657-1662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For the pulping process in a pulp & paper plant that uses wood as a raw material, it is important to have real-time knowledge about the moisture content of the woodchips so that the process can be optimized and/or controlled correspondingly to achieve satisfactory product quality while minimizing the consumption of energy and chemicals. Both destructive and non-destructive methods have been developed for estimating moisture content in woodchips, but these methods are often lab-based that cannot be implemented online, or too fragile to stand the harsh manufacturing environment. To address these limitations, we propose a non-destructive and economic approach based on 5 GHz Wi-Fi and use channel state information (CSI) to estimate the moisture content in woodchips. In addition, we propose to use statistics pattern analysis (SPA) to extract features from raw CSI data of amplitude and phase difference. The extracted features are then used for classification model building using linear discriminant analysis (LDA) and subspace discriminant (SD) classification. The woodchip moisture classification results are validated using the oven drying method. 
    more » « less
  2. Early fault detection in rolling element bearings is pivotal for the effective predictive maintenance of rotating machinery. Deep Learning (DL) methods have been widely studied for vibration-based bearing fault diagnostics largely because of their capability to automatically extract fault-related features from raw or processed vibration data. Although most DL models in the current literature can provide fairly accurate classification outputs, the typical diagnostic procedure is performed in an offline environment utilizing powerful computers. This centralized approach can lead to unacceptable delays in safety-critical applications and can prohibit cost-sensitive wireless data collection. Meanwhile, very few studies have reported on deploying DL models on microprocessor-based Industrial Internet of Things (IIoT) devices, where edge computing can give users a real-time evaluation of bearing health without requiring expensive computational infrastructure. This paper demonstrates an IIoT deployment of a physics-informed DL model inside a commercially available wireless vibration sensor for online health classification. The diagnostic model here is developed and trained offline, and the trained model is then deployed inside the embedded system for online prediction. We demonstrate the model’s online diagnostic performance by imitating bearing vibration signals on a vibration shaker and by performing edge computing on the embedded system mounted on the shaker. 
    more » « less
  3. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less
  4. null (Ed.)
    Industrial Internet of Things (IIoT) systems aim to interconnect a large number of heterogeneous industrial sensing and actuation devices through both wired and wireless communication technologies and further connect them to the Internet to achieve ubiquitous sensing, computing and control services [1]. As a representative IIoT technology, 6TiSCH [2] targets at gluing together the 802.15.4e data link layer (offering industrial performance in terms of timing, reliability and power consumption) and an IP-enabled upper layer stack to achieve both deterministic network performance and seamless integration with Internet services. In recent years, 6TiSCH has been receiving increasing attentions from both industry and academia. We have witnessed its wide deployment in many industrial domains, including advanced manufacturing, industrial process control, smart grids, and healthcare. 
    more » « less
  5. Grewe, Lynne L. ; Blasch, Erik P. ; Kadar, Ivan (Ed.)
    Sensor fusion combines data from a suite of sensors into an integrated solution that represents the target environment more accurately than that produced by individual sensors. New developments in Machine Learning (ML) algorithms are leading to increased accuracy, precision, and reliability in sensor fusion performance. However, these increases are accompanied by increases in system costs. Aircraft sensor systems have limited computing, storage, and bandwidth resources, which must balance monetary, computational, and throughput costs, sensor fusion performance, aircraft safety, data security, robustness, and modularity system objectives while meeting strict timing requirements. Performing trade studies of these system objectives should come before incorporating new ML models into the sensor fusion software. A scalable and automated solution is needed to quickly analyze the effects on the system’s objectives of providing additional resources to the new inference models. Given that model-based systems engineering (MBSE) is a focus of the majority of the aerospace industry for designing aircraft mission systems, it follows that leveraging these system models can provide scalability to the system analyses needed. This paper proposes adding empirically derived sensor fusion RNN performance and cost measurement data to machine-readable Model Cards. Furthermore, this paper proposes a scalable and automated sensor fusion system analysis process for ingesting SysML system model information and RNN Model Cards for system analyses. The value of this process is the integration of data analysis and system design that enables rapid enhancements of sensor system development. 
    more » « less